Metamath Proof Explorer


Definition df-extv

Description: Define the "variable extension" function. The function ( ( I extendVars R )A ) converts polynomials with variables indexed by ( I \ { A } ) into polynomials indexed by I , and therefore maps elements of ( ( I \ { A } ) mPoly R ) onto ( I mPoly R ) . (Contributed by Thierry Arnoux, 20-Jan-2026)

Ref Expression
Assertion df-extv extendVars = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cextv extendVars
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 va 𝑎
5 1 cv 𝑖
6 vf 𝑓
7 cbs Base
8 4 cv 𝑎
9 8 csn { 𝑎 }
10 5 9 cdif ( 𝑖 ∖ { 𝑎 } )
11 cmpl mPoly
12 3 cv 𝑟
13 10 12 11 co ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 )
14 13 7 cfv ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) )
15 vx 𝑥
16 vh
17 cn0 0
18 cmap m
19 17 5 18 co ( ℕ0m 𝑖 )
20 16 cv
21 cfsupp finSupp
22 cc0 0
23 20 22 21 wbr finSupp 0
24 23 16 19 crab { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 }
25 15 cv 𝑥
26 8 25 cfv ( 𝑥𝑎 )
27 26 22 wceq ( 𝑥𝑎 ) = 0
28 6 cv 𝑓
29 25 10 cres ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) )
30 29 28 cfv ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) )
31 c0g 0g
32 12 31 cfv ( 0g𝑟 )
33 27 30 32 cif if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) )
34 15 24 33 cmpt ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) ) )
35 6 14 34 cmpt ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) ) ) )
36 4 5 35 cmpt ( 𝑎𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) ) ) ) )
37 1 3 2 2 36 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) ) ) ) ) )
38 0 37 wceq extendVars = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ↦ if ( ( 𝑥𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g𝑟 ) ) ) ) ) )