| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cextv |
⊢ extendVars |
| 1 |
|
vi |
⊢ 𝑖 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
va |
⊢ 𝑎 |
| 5 |
1
|
cv |
⊢ 𝑖 |
| 6 |
|
vf |
⊢ 𝑓 |
| 7 |
|
cbs |
⊢ Base |
| 8 |
4
|
cv |
⊢ 𝑎 |
| 9 |
8
|
csn |
⊢ { 𝑎 } |
| 10 |
5 9
|
cdif |
⊢ ( 𝑖 ∖ { 𝑎 } ) |
| 11 |
|
cmpl |
⊢ mPoly |
| 12 |
3
|
cv |
⊢ 𝑟 |
| 13 |
10 12 11
|
co |
⊢ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) |
| 14 |
13 7
|
cfv |
⊢ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) |
| 15 |
|
vx |
⊢ 𝑥 |
| 16 |
|
vh |
⊢ ℎ |
| 17 |
|
cn0 |
⊢ ℕ0 |
| 18 |
|
cmap |
⊢ ↑m |
| 19 |
17 5 18
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
| 20 |
16
|
cv |
⊢ ℎ |
| 21 |
|
cfsupp |
⊢ finSupp |
| 22 |
|
cc0 |
⊢ 0 |
| 23 |
20 22 21
|
wbr |
⊢ ℎ finSupp 0 |
| 24 |
23 16 19
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } |
| 25 |
15
|
cv |
⊢ 𝑥 |
| 26 |
8 25
|
cfv |
⊢ ( 𝑥 ‘ 𝑎 ) |
| 27 |
26 22
|
wceq |
⊢ ( 𝑥 ‘ 𝑎 ) = 0 |
| 28 |
6
|
cv |
⊢ 𝑓 |
| 29 |
25 10
|
cres |
⊢ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) |
| 30 |
29 28
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) |
| 31 |
|
c0g |
⊢ 0g |
| 32 |
12 31
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 33 |
27 30 32
|
cif |
⊢ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) |
| 34 |
15 24 33
|
cmpt |
⊢ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) |
| 35 |
6 14 34
|
cmpt |
⊢ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) |
| 36 |
4 5 35
|
cmpt |
⊢ ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) |
| 37 |
1 3 2 2 36
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) |
| 38 |
0 37
|
wceq |
⊢ extendVars = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑎 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( ( 𝑖 ∖ { 𝑎 } ) mPoly 𝑟 ) ) ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ↦ if ( ( 𝑥 ‘ 𝑎 ) = 0 , ( 𝑓 ‘ ( 𝑥 ↾ ( 𝑖 ∖ { 𝑎 } ) ) ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) |