| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cextv |
|- extendVars |
| 1 |
|
vi |
|- i |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vr |
|- r |
| 4 |
|
va |
|- a |
| 5 |
1
|
cv |
|- i |
| 6 |
|
vf |
|- f |
| 7 |
|
cbs |
|- Base |
| 8 |
4
|
cv |
|- a |
| 9 |
8
|
csn |
|- { a } |
| 10 |
5 9
|
cdif |
|- ( i \ { a } ) |
| 11 |
|
cmpl |
|- mPoly |
| 12 |
3
|
cv |
|- r |
| 13 |
10 12 11
|
co |
|- ( ( i \ { a } ) mPoly r ) |
| 14 |
13 7
|
cfv |
|- ( Base ` ( ( i \ { a } ) mPoly r ) ) |
| 15 |
|
vx |
|- x |
| 16 |
|
vh |
|- h |
| 17 |
|
cn0 |
|- NN0 |
| 18 |
|
cmap |
|- ^m |
| 19 |
17 5 18
|
co |
|- ( NN0 ^m i ) |
| 20 |
16
|
cv |
|- h |
| 21 |
|
cfsupp |
|- finSupp |
| 22 |
|
cc0 |
|- 0 |
| 23 |
20 22 21
|
wbr |
|- h finSupp 0 |
| 24 |
23 16 19
|
crab |
|- { h e. ( NN0 ^m i ) | h finSupp 0 } |
| 25 |
15
|
cv |
|- x |
| 26 |
8 25
|
cfv |
|- ( x ` a ) |
| 27 |
26 22
|
wceq |
|- ( x ` a ) = 0 |
| 28 |
6
|
cv |
|- f |
| 29 |
25 10
|
cres |
|- ( x |` ( i \ { a } ) ) |
| 30 |
29 28
|
cfv |
|- ( f ` ( x |` ( i \ { a } ) ) ) |
| 31 |
|
c0g |
|- 0g |
| 32 |
12 31
|
cfv |
|- ( 0g ` r ) |
| 33 |
27 30 32
|
cif |
|- if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) |
| 34 |
15 24 33
|
cmpt |
|- ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) |
| 35 |
6 14 34
|
cmpt |
|- ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) |
| 36 |
4 5 35
|
cmpt |
|- ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) |
| 37 |
1 3 2 2 36
|
cmpo |
|- ( i e. _V , r e. _V |-> ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) ) |
| 38 |
0 37
|
wceq |
|- extendVars = ( i e. _V , r e. _V |-> ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) ) |