| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
extvval.1 |
|- .0. = ( 0g ` R ) |
| 3 |
|
extvval.i |
|- ( ph -> I e. V ) |
| 4 |
|
extvval.r |
|- ( ph -> R e. W ) |
| 5 |
|
extvval.j |
|- J = ( I \ { a } ) |
| 6 |
|
extvval.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 7 |
|
df-extv |
|- extendVars = ( i e. _V , r e. _V |-> ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) ) |
| 8 |
7
|
a1i |
|- ( ph -> extendVars = ( i e. _V , r e. _V |-> ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) ) ) |
| 9 |
|
simpl |
|- ( ( i = I /\ r = R ) -> i = I ) |
| 10 |
|
difeq1 |
|- ( i = I -> ( i \ { a } ) = ( I \ { a } ) ) |
| 11 |
10 5
|
eqtr4di |
|- ( i = I -> ( i \ { a } ) = J ) |
| 12 |
11
|
adantr |
|- ( ( i = I /\ r = R ) -> ( i \ { a } ) = J ) |
| 13 |
|
simpr |
|- ( ( i = I /\ r = R ) -> r = R ) |
| 14 |
12 13
|
oveq12d |
|- ( ( i = I /\ r = R ) -> ( ( i \ { a } ) mPoly r ) = ( J mPoly R ) ) |
| 15 |
14
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( ( i \ { a } ) mPoly r ) ) = ( Base ` ( J mPoly R ) ) ) |
| 16 |
15 6
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( Base ` ( ( i \ { a } ) mPoly r ) ) = M ) |
| 17 |
|
oveq2 |
|- ( i = I -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 18 |
17
|
rabeqdv |
|- ( i = I -> { h e. ( NN0 ^m i ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 19 |
18 1
|
eqtr4di |
|- ( i = I -> { h e. ( NN0 ^m i ) | h finSupp 0 } = D ) |
| 20 |
19
|
adantr |
|- ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | h finSupp 0 } = D ) |
| 21 |
10
|
reseq2d |
|- ( i = I -> ( x |` ( i \ { a } ) ) = ( x |` ( I \ { a } ) ) ) |
| 22 |
21
|
fveq2d |
|- ( i = I -> ( f ` ( x |` ( i \ { a } ) ) ) = ( f ` ( x |` ( I \ { a } ) ) ) ) |
| 23 |
22
|
adantr |
|- ( ( i = I /\ r = R ) -> ( f ` ( x |` ( i \ { a } ) ) ) = ( f ` ( x |` ( I \ { a } ) ) ) ) |
| 24 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
| 25 |
24
|
adantl |
|- ( ( i = I /\ r = R ) -> ( 0g ` r ) = ( 0g ` R ) ) |
| 26 |
25 2
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( 0g ` r ) = .0. ) |
| 27 |
23 26
|
ifeq12d |
|- ( ( i = I /\ r = R ) -> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) = if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) |
| 28 |
20 27
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) = ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) |
| 29 |
16 28
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) = ( f e. M |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) ) |
| 30 |
9 29
|
mpteq12dv |
|- ( ( i = I /\ r = R ) -> ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) = ( a e. I |-> ( f e. M |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> ( a e. i |-> ( f e. ( Base ` ( ( i \ { a } ) mPoly r ) ) |-> ( x e. { h e. ( NN0 ^m i ) | h finSupp 0 } |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( i \ { a } ) ) ) , ( 0g ` r ) ) ) ) ) = ( a e. I |-> ( f e. M |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) ) ) |
| 32 |
3
|
elexd |
|- ( ph -> I e. _V ) |
| 33 |
4
|
elexd |
|- ( ph -> R e. _V ) |
| 34 |
3
|
mptexd |
|- ( ph -> ( a e. I |-> ( f e. M |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) ) e. _V ) |
| 35 |
8 31 32 33 34
|
ovmpod |
|- ( ph -> ( I extendVars R ) = ( a e. I |-> ( f e. M |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) ) ) |