| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
extvval.1 |
|- .0. = ( 0g ` R ) |
| 3 |
|
extvval.i |
|- ( ph -> I e. V ) |
| 4 |
|
extvval.r |
|- ( ph -> R e. W ) |
| 5 |
|
extvfval.a |
|- ( ph -> A e. I ) |
| 6 |
|
extvfval.j |
|- J = ( I \ { A } ) |
| 7 |
|
extvfval.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 8 |
|
sneq |
|- ( a = A -> { a } = { A } ) |
| 9 |
8
|
difeq2d |
|- ( a = A -> ( I \ { a } ) = ( I \ { A } ) ) |
| 10 |
9 6
|
eqtr4di |
|- ( a = A -> ( I \ { a } ) = J ) |
| 11 |
10
|
fvoveq1d |
|- ( a = A -> ( Base ` ( ( I \ { a } ) mPoly R ) ) = ( Base ` ( J mPoly R ) ) ) |
| 12 |
11 7
|
eqtr4di |
|- ( a = A -> ( Base ` ( ( I \ { a } ) mPoly R ) ) = M ) |
| 13 |
|
fveqeq2 |
|- ( a = A -> ( ( x ` a ) = 0 <-> ( x ` A ) = 0 ) ) |
| 14 |
10
|
reseq2d |
|- ( a = A -> ( x |` ( I \ { a } ) ) = ( x |` J ) ) |
| 15 |
14
|
fveq2d |
|- ( a = A -> ( f ` ( x |` ( I \ { a } ) ) ) = ( f ` ( x |` J ) ) ) |
| 16 |
13 15
|
ifbieq1d |
|- ( a = A -> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) = if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) |
| 17 |
16
|
mpteq2dv |
|- ( a = A -> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) |
| 18 |
12 17
|
mpteq12dv |
|- ( a = A -> ( f e. ( Base ` ( ( I \ { a } ) mPoly R ) ) |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) |
| 19 |
|
eqid |
|- ( I \ { a } ) = ( I \ { a } ) |
| 20 |
|
eqid |
|- ( Base ` ( ( I \ { a } ) mPoly R ) ) = ( Base ` ( ( I \ { a } ) mPoly R ) ) |
| 21 |
1 2 3 4 19 20
|
extvval |
|- ( ph -> ( I extendVars R ) = ( a e. I |-> ( f e. ( Base ` ( ( I \ { a } ) mPoly R ) ) |-> ( x e. D |-> if ( ( x ` a ) = 0 , ( f ` ( x |` ( I \ { a } ) ) ) , .0. ) ) ) ) ) |
| 22 |
7
|
fvexi |
|- M e. _V |
| 23 |
22
|
mptex |
|- ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) e. _V |
| 24 |
23
|
a1i |
|- ( ph -> ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) e. _V ) |
| 25 |
18 21 5 24
|
fvmptd4 |
|- ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) |