| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvval.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
extvval.1 |
|- .0. = ( 0g ` R ) |
| 3 |
|
extvval.i |
|- ( ph -> I e. V ) |
| 4 |
|
extvval.r |
|- ( ph -> R e. W ) |
| 5 |
|
extvfval.a |
|- ( ph -> A e. I ) |
| 6 |
|
extvfval.j |
|- J = ( I \ { A } ) |
| 7 |
|
extvfval.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 8 |
|
extvfv.1 |
|- ( ph -> F e. M ) |
| 9 |
|
fveq1 |
|- ( f = F -> ( f ` ( x |` J ) ) = ( F ` ( x |` J ) ) ) |
| 10 |
9
|
ifeq1d |
|- ( f = F -> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) = if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) |
| 11 |
10
|
mpteq2dv |
|- ( f = F -> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) |
| 12 |
1 2 3 4 5 6 7
|
extvfval |
|- ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) |
| 13 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 14 |
1 13
|
rabex2 |
|- D e. _V |
| 15 |
14
|
a1i |
|- ( ph -> D e. _V ) |
| 16 |
15
|
mptexd |
|- ( ph -> ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) e. _V ) |
| 17 |
11 12 8 16
|
fvmptd4 |
|- ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) |