Metamath Proof Explorer


Theorem extvfv

Description: The "variable extension" function evaluated for converting a given polynomial F by adding a variable with index A . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvval.d D = h 0 I | finSupp 0 h
extvval.1 0 ˙ = 0 R
extvval.i φ I V
extvval.r φ R W
extvfval.a φ A I
extvfval.j J = I A
extvfval.m M = Base J mPoly R
extvfv.1 φ F M
Assertion extvfv Could not format assertion : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 extvval.d D = h 0 I | finSupp 0 h
2 extvval.1 0 ˙ = 0 R
3 extvval.i φ I V
4 extvval.r φ R W
5 extvfval.a φ A I
6 extvfval.j J = I A
7 extvfval.m M = Base J mPoly R
8 extvfv.1 φ F M
9 fveq1 f = F f x J = F x J
10 9 ifeq1d f = F if x A = 0 f x J 0 ˙ = if x A = 0 F x J 0 ˙
11 10 mpteq2dv f = F x D if x A = 0 f x J 0 ˙ = x D if x A = 0 F x J 0 ˙
12 1 2 3 4 5 6 7 extvfval Could not format ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) : No typesetting found for |- ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) with typecode |-
13 ovex 0 I V
14 1 13 rabex2 D V
15 14 a1i φ D V
16 15 mptexd φ x D if x A = 0 F x J 0 ˙ V
17 11 12 8 16 fvmptd4 Could not format ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) : No typesetting found for |- ( ph -> ( ( ( I extendVars R ) ` A ) ` F ) = ( x e. D |-> if ( ( x ` A ) = 0 , ( F ` ( x |` J ) ) , .0. ) ) ) with typecode |-