Metamath Proof Explorer


Theorem extvfvalf

Description: The "variable extension" function maps polynomials with variables indexed in J to polynomials with variables indexed in I . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvfvvcl.d
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 }
extvfvvcl.3
|- .0. = ( 0g ` R )
extvfvvcl.i
|- ( ph -> I e. V )
extvfvvcl.r
|- ( ph -> R e. Ring )
extvfvvcl.b
|- B = ( Base ` R )
extvfvvcl.j
|- J = ( I \ { A } )
extvfvvcl.m
|- M = ( Base ` ( J mPoly R ) )
extvfvvcl.1
|- ( ph -> A e. I )
extvfvalf.n
|- N = ( Base ` ( I mPoly R ) )
Assertion extvfvalf
|- ( ph -> ( ( I extendVars R ) ` A ) : M --> N )

Proof

Step Hyp Ref Expression
1 extvfvvcl.d
 |-  D = { h e. ( NN0 ^m I ) | h finSupp 0 }
2 extvfvvcl.3
 |-  .0. = ( 0g ` R )
3 extvfvvcl.i
 |-  ( ph -> I e. V )
4 extvfvvcl.r
 |-  ( ph -> R e. Ring )
5 extvfvvcl.b
 |-  B = ( Base ` R )
6 extvfvvcl.j
 |-  J = ( I \ { A } )
7 extvfvvcl.m
 |-  M = ( Base ` ( J mPoly R ) )
8 extvfvvcl.1
 |-  ( ph -> A e. I )
9 extvfvalf.n
 |-  N = ( Base ` ( I mPoly R ) )
10 ovex
 |-  ( NN0 ^m I ) e. _V
11 1 10 rabex2
 |-  D e. _V
12 11 a1i
 |-  ( ( ph /\ f e. M ) -> D e. _V )
13 12 mptexd
 |-  ( ( ph /\ f e. M ) -> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) e. _V )
14 1 2 3 4 8 6 7 extvfval
 |-  ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) )
15 3 adantr
 |-  ( ( ph /\ f e. M ) -> I e. V )
16 4 adantr
 |-  ( ( ph /\ f e. M ) -> R e. Ring )
17 8 adantr
 |-  ( ( ph /\ f e. M ) -> A e. I )
18 simpr
 |-  ( ( ph /\ f e. M ) -> f e. M )
19 1 2 15 16 5 6 7 17 18 9 extvfvcl
 |-  ( ( ph /\ f e. M ) -> ( ( ( I extendVars R ) ` A ) ` f ) e. N )
20 13 14 19 fmpt2d
 |-  ( ph -> ( ( I extendVars R ) ` A ) : M --> N )