| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extvfvvcl.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
extvfvvcl.3 |
|- .0. = ( 0g ` R ) |
| 3 |
|
extvfvvcl.i |
|- ( ph -> I e. V ) |
| 4 |
|
extvfvvcl.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
extvfvvcl.b |
|- B = ( Base ` R ) |
| 6 |
|
extvfvvcl.j |
|- J = ( I \ { A } ) |
| 7 |
|
extvfvvcl.m |
|- M = ( Base ` ( J mPoly R ) ) |
| 8 |
|
extvfvvcl.1 |
|- ( ph -> A e. I ) |
| 9 |
|
extvfvalf.n |
|- N = ( Base ` ( I mPoly R ) ) |
| 10 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 11 |
1 10
|
rabex2 |
|- D e. _V |
| 12 |
11
|
a1i |
|- ( ( ph /\ f e. M ) -> D e. _V ) |
| 13 |
12
|
mptexd |
|- ( ( ph /\ f e. M ) -> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) e. _V ) |
| 14 |
1 2 3 4 8 6 7
|
extvfval |
|- ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) |
| 15 |
3
|
adantr |
|- ( ( ph /\ f e. M ) -> I e. V ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ f e. M ) -> R e. Ring ) |
| 17 |
8
|
adantr |
|- ( ( ph /\ f e. M ) -> A e. I ) |
| 18 |
|
simpr |
|- ( ( ph /\ f e. M ) -> f e. M ) |
| 19 |
1 2 15 16 5 6 7 17 18 9
|
extvfvcl |
|- ( ( ph /\ f e. M ) -> ( ( ( I extendVars R ) ` A ) ` f ) e. N ) |
| 20 |
13 14 19
|
fmpt2d |
|- ( ph -> ( ( I extendVars R ) ` A ) : M --> N ) |