| Step |
Hyp |
Ref |
Expression |
| 1 |
|
partfun2.1 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } |
| 2 |
|
partfun |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐷 , 𝐵 , 𝐶 ) ) = ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐷 ) ↦ 𝐶 ) ) |
| 3 |
1
|
reqabi |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 4 |
3
|
baib |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐷 ↔ 𝜑 ) ) |
| 5 |
4
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐷 , 𝐵 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐶 ) ) |
| 6 |
5
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐷 , 𝐵 , 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) |
| 7 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ 𝐴 |
| 8 |
|
sseqin2 |
⊢ ( 𝐷 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐷 ) = 𝐷 ) |
| 9 |
7 8
|
mpbi |
⊢ ( 𝐴 ∩ 𝐷 ) = 𝐷 |
| 10 |
9
|
mpteq1i |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) |
| 11 |
10
|
uneq1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐷 ) ↦ 𝐶 ) ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐷 ) ↦ 𝐶 ) ) |
| 12 |
2 6 11
|
3eqtr3i |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐷 ) ↦ 𝐶 ) ) |