| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 2 |
|
fnressn |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐴 } ) = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 3 |
1 2
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ↾ { 𝐴 } ) = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 4 |
3
|
rneqd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ran ( 𝐹 ↾ { 𝐴 } ) = ran { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 5 |
|
rnsnopg |
⊢ ( 𝐴 ∈ dom 𝐹 → ran { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } = { ( 𝐹 ‘ 𝐴 ) } ) |
| 6 |
5
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ran { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } = { ( 𝐹 ‘ 𝐴 ) } ) |
| 7 |
4 6
|
eqtrd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ran ( 𝐹 ↾ { 𝐴 } ) = { ( 𝐹 ‘ 𝐴 ) } ) |