| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 2 |
|
fnressn |
|- ( ( F Fn dom F /\ A e. dom F ) -> ( F |` { A } ) = { <. A , ( F ` A ) >. } ) |
| 3 |
1 2
|
sylanb |
|- ( ( Fun F /\ A e. dom F ) -> ( F |` { A } ) = { <. A , ( F ` A ) >. } ) |
| 4 |
3
|
rneqd |
|- ( ( Fun F /\ A e. dom F ) -> ran ( F |` { A } ) = ran { <. A , ( F ` A ) >. } ) |
| 5 |
|
rnsnopg |
|- ( A e. dom F -> ran { <. A , ( F ` A ) >. } = { ( F ` A ) } ) |
| 6 |
5
|
adantl |
|- ( ( Fun F /\ A e. dom F ) -> ran { <. A , ( F ` A ) >. } = { ( F ` A ) } ) |
| 7 |
4 6
|
eqtrd |
|- ( ( Fun F /\ A e. dom F ) -> ran ( F |` { A } ) = { ( F ` A ) } ) |