Metamath Proof Explorer


Theorem rnressnsn

Description: The range of a restriction to a singleton is a singleton. See dmressnsn . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Assertion rnressnsn
|- ( ( Fun F /\ A e. dom F ) -> ran ( F |` { A } ) = { ( F ` A ) } )

Proof

Step Hyp Ref Expression
1 funfn
 |-  ( Fun F <-> F Fn dom F )
2 fnressn
 |-  ( ( F Fn dom F /\ A e. dom F ) -> ( F |` { A } ) = { <. A , ( F ` A ) >. } )
3 1 2 sylanb
 |-  ( ( Fun F /\ A e. dom F ) -> ( F |` { A } ) = { <. A , ( F ` A ) >. } )
4 3 rneqd
 |-  ( ( Fun F /\ A e. dom F ) -> ran ( F |` { A } ) = ran { <. A , ( F ` A ) >. } )
5 rnsnopg
 |-  ( A e. dom F -> ran { <. A , ( F ` A ) >. } = { ( F ` A ) } )
6 5 adantl
 |-  ( ( Fun F /\ A e. dom F ) -> ran { <. A , ( F ` A ) >. } = { ( F ` A ) } )
7 4 6 eqtrd
 |-  ( ( Fun F /\ A e. dom F ) -> ran ( F |` { A } ) = { ( F ` A ) } )