Metamath Proof Explorer


Theorem partfun2

Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. See also partfun and ifmpt2v . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypothesis partfun2.1 D = x A | φ
Assertion partfun2 x A if φ B C = x D B x A D C

Proof

Step Hyp Ref Expression
1 partfun2.1 D = x A | φ
2 partfun x A if x D B C = x A D B x A D C
3 1 reqabi x D x A φ
4 3 baib x A x D φ
5 4 ifbid x A if x D B C = if φ B C
6 5 mpteq2ia x A if x D B C = x A if φ B C
7 1 ssrab3 D A
8 sseqin2 D A A D = D
9 7 8 mpbi A D = D
10 9 mpteq1i x A D B = x D B
11 10 uneq1i x A D B x A D C = x D B x A D C
12 2 6 11 3eqtr3i x A if φ B C = x D B x A D C