| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐵 ) |
| 2 |
1
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 3 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 4 |
2 3
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 5 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐶 ) |
| 6 |
5
|
mpteq2dv |
⊢ ( ¬ 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 7 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 8 |
6 7
|
eqtr4d |
⊢ ( ¬ 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 9 |
4 8
|
pm2.61i |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |