| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coexg |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
| 2 |
|
simpl |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → 𝑍 ∈ V ) |
| 3 |
|
suppimacnv |
⊢ ( ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 4 |
1 2 3
|
syl2an2 |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 5 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐺 ) = ( ◡ 𝐺 ∘ ◡ 𝐹 ) |
| 6 |
5
|
imaeq1i |
⊢ ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ◡ ( 𝐹 ∘ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 8 |
|
imaco |
⊢ ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 9 |
|
simprl |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → 𝐹 ∈ 𝑉 ) |
| 10 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 11 |
9 2 10
|
syl2anc |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 12 |
11
|
imaeq2d |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐺 “ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) |
| 13 |
8 12
|
eqtr4id |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( ◡ 𝐺 ∘ ◡ 𝐹 ) “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| 14 |
4 7 13
|
3eqtrd |
⊢ ( ( 𝑍 ∈ V ∧ ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| 15 |
14
|
ex |
⊢ ( 𝑍 ∈ V → ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
| 16 |
|
prcnel |
⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V ) |
| 17 |
16
|
intnand |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 18 |
|
supp0prc |
⊢ ( ¬ ( ( 𝐹 ∘ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ∅ ) |
| 19 |
17 18
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ∅ ) |
| 20 |
16
|
intnand |
⊢ ( ¬ 𝑍 ∈ V → ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ) |
| 21 |
|
supp0prc |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) |
| 22 |
20 21
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) = ∅ ) |
| 23 |
22
|
imaeq2d |
⊢ ( ¬ 𝑍 ∈ V → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ( ◡ 𝐺 “ ∅ ) ) |
| 24 |
|
ima0 |
⊢ ( ◡ 𝐺 “ ∅ ) = ∅ |
| 25 |
23 24
|
eqtrdi |
⊢ ( ¬ 𝑍 ∈ V → ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) = ∅ ) |
| 26 |
19 25
|
eqtr4d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
| 27 |
26
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
| 28 |
15 27
|
pm2.61i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |