| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coexg |
|- ( ( F e. V /\ G e. W ) -> ( F o. G ) e. _V ) |
| 2 |
|
simpl |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> Z e. _V ) |
| 3 |
|
suppimacnv |
|- ( ( ( F o. G ) e. _V /\ Z e. _V ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) |
| 4 |
1 2 3
|
syl2an2 |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( F o. G ) supp Z ) = ( `' ( F o. G ) " ( _V \ { Z } ) ) ) |
| 5 |
|
cnvco |
|- `' ( F o. G ) = ( `' G o. `' F ) |
| 6 |
5
|
imaeq1i |
|- ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) |
| 7 |
6
|
a1i |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) ) |
| 8 |
|
imaco |
|- ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) |
| 9 |
|
simprl |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> F e. V ) |
| 10 |
|
suppimacnv |
|- ( ( F e. V /\ Z e. _V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 11 |
9 2 10
|
syl2anc |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 12 |
11
|
imaeq2d |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( `' G " ( F supp Z ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) ) |
| 13 |
8 12
|
eqtr4id |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( F supp Z ) ) ) |
| 14 |
4 7 13
|
3eqtrd |
|- ( ( Z e. _V /\ ( F e. V /\ G e. W ) ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
| 15 |
14
|
ex |
|- ( Z e. _V -> ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) ) |
| 16 |
|
prcnel |
|- ( -. Z e. _V -> -. Z e. _V ) |
| 17 |
16
|
intnand |
|- ( -. Z e. _V -> -. ( ( F o. G ) e. _V /\ Z e. _V ) ) |
| 18 |
|
supp0prc |
|- ( -. ( ( F o. G ) e. _V /\ Z e. _V ) -> ( ( F o. G ) supp Z ) = (/) ) |
| 19 |
17 18
|
syl |
|- ( -. Z e. _V -> ( ( F o. G ) supp Z ) = (/) ) |
| 20 |
16
|
intnand |
|- ( -. Z e. _V -> -. ( F e. _V /\ Z e. _V ) ) |
| 21 |
|
supp0prc |
|- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
| 22 |
20 21
|
syl |
|- ( -. Z e. _V -> ( F supp Z ) = (/) ) |
| 23 |
22
|
imaeq2d |
|- ( -. Z e. _V -> ( `' G " ( F supp Z ) ) = ( `' G " (/) ) ) |
| 24 |
|
ima0 |
|- ( `' G " (/) ) = (/) |
| 25 |
23 24
|
eqtrdi |
|- ( -. Z e. _V -> ( `' G " ( F supp Z ) ) = (/) ) |
| 26 |
19 25
|
eqtr4d |
|- ( -. Z e. _V -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
| 27 |
26
|
a1d |
|- ( -. Z e. _V -> ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) ) |
| 28 |
15 27
|
pm2.61i |
|- ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |