Metamath Proof Explorer


Theorem suppco

Description: The support of the composition of two functions is the inverse image by the inner function of the support of the outer function. (Contributed by AV, 30-May-2019) Extract this statement from the proof of supp0cosupp0 . (Revised by SN, 15-Sep-2023)

Ref Expression
Assertion suppco F V G W F G supp Z = G -1 F supp Z

Proof

Step Hyp Ref Expression
1 coexg F V G W F G V
2 simpl Z V F V G W Z V
3 suppimacnv F G V Z V F G supp Z = F G -1 V Z
4 1 2 3 syl2an2 Z V F V G W F G supp Z = F G -1 V Z
5 cnvco F G -1 = G -1 F -1
6 5 imaeq1i F G -1 V Z = G -1 F -1 V Z
7 6 a1i Z V F V G W F G -1 V Z = G -1 F -1 V Z
8 imaco G -1 F -1 V Z = G -1 F -1 V Z
9 simprl Z V F V G W F V
10 suppimacnv F V Z V F supp Z = F -1 V Z
11 9 2 10 syl2anc Z V F V G W F supp Z = F -1 V Z
12 11 imaeq2d Z V F V G W G -1 F supp Z = G -1 F -1 V Z
13 8 12 eqtr4id Z V F V G W G -1 F -1 V Z = G -1 F supp Z
14 4 7 13 3eqtrd Z V F V G W F G supp Z = G -1 F supp Z
15 14 ex Z V F V G W F G supp Z = G -1 F supp Z
16 prcnel ¬ Z V ¬ Z V
17 16 intnand ¬ Z V ¬ F G V Z V
18 supp0prc ¬ F G V Z V F G supp Z =
19 17 18 syl ¬ Z V F G supp Z =
20 16 intnand ¬ Z V ¬ F V Z V
21 supp0prc ¬ F V Z V F supp Z =
22 20 21 syl ¬ Z V F supp Z =
23 22 imaeq2d ¬ Z V G -1 F supp Z = G -1
24 ima0 G -1 =
25 23 24 eqtrdi ¬ Z V G -1 F supp Z =
26 19 25 eqtr4d ¬ Z V F G supp Z = G -1 F supp Z
27 26 a1d ¬ Z V F V G W F G supp Z = G -1 F supp Z
28 15 27 pm2.61i F V G W F G supp Z = G -1 F supp Z