| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyindfv.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 2 |
|
esplyindfv.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplyindfv.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 4 |
|
esplyindfv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 5 |
|
esplyindfv.j |
⊢ 𝐽 = ( 𝐼 ∖ { 𝑌 } ) |
| 6 |
|
esplyindfv.e |
⊢ 𝐸 = ( 𝐽 eSymPoly 𝑅 ) |
| 7 |
|
esplyindfv.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) ) |
| 8 |
|
esplyindfv.c |
⊢ 𝐶 = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } |
| 9 |
|
esplyindfv.f |
⊢ 𝐹 = ( ( 𝐼 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) |
| 10 |
|
esplyindfv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 11 |
|
esplyindfv.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 12 |
|
esplyindfv.o |
⊢ 𝑂 = ( 𝐽 eval 𝑅 ) |
| 13 |
|
esplyindfv.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 14 |
|
esplyindfv.z |
⊢ ( 𝜑 → 𝑍 : 𝐼 ⟶ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 16 |
|
eqid |
⊢ ( 𝐼 mVar 𝑅 ) = ( 𝐼 mVar 𝑅 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) = ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 18 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) = ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 19 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 20 |
|
eqid |
⊢ ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) = ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) |
| 21 |
3
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 22 |
7
|
elfzelzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 23 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 24 |
2 23
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 25 |
24
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 26 |
5
|
uneq1i |
⊢ ( 𝐽 ∪ { 𝑌 } ) = ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) |
| 27 |
4
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐼 ) |
| 28 |
|
undifr |
⊢ ( { 𝑌 } ⊆ 𝐼 ↔ ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 ) |
| 29 |
27 28
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = 𝐼 ) |
| 30 |
26 29
|
eqtrid |
⊢ ( 𝜑 → ( 𝐽 ∪ { 𝑌 } ) = 𝐼 ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐽 ∪ { 𝑌 } ) ) = ( ♯ ‘ 𝐼 ) ) |
| 32 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝑌 } ) ⊆ 𝐼 ) |
| 33 |
5 32
|
eqsstrid |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 34 |
2 33
|
ssfid |
⊢ ( 𝜑 → 𝐽 ∈ Fin ) |
| 35 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝐼 ∖ { 𝑌 } ) ) |
| 36 |
5
|
eleq2i |
⊢ ( 𝑌 ∈ 𝐽 ↔ 𝑌 ∈ ( 𝐼 ∖ { 𝑌 } ) ) |
| 37 |
35 36
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝐽 ) |
| 38 |
|
hashunsng |
⊢ ( 𝑌 ∈ 𝐼 → ( ( 𝐽 ∈ Fin ∧ ¬ 𝑌 ∈ 𝐽 ) → ( ♯ ‘ ( 𝐽 ∪ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐽 ) + 1 ) ) ) |
| 39 |
38
|
imp |
⊢ ( ( 𝑌 ∈ 𝐼 ∧ ( 𝐽 ∈ Fin ∧ ¬ 𝑌 ∈ 𝐽 ) ) → ( ♯ ‘ ( 𝐽 ∪ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐽 ) + 1 ) ) |
| 40 |
4 34 37 39
|
syl12anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐽 ∪ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐽 ) + 1 ) ) |
| 41 |
31 40
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) = ( ( ♯ ‘ 𝐽 ) + 1 ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) − 1 ) = ( ( ( ♯ ‘ 𝐽 ) + 1 ) − 1 ) ) |
| 43 |
|
hashcl |
⊢ ( 𝐽 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 44 |
34 43
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 45 |
44
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 46 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 47 |
45 46
|
pncand |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐽 ) + 1 ) − 1 ) = ( ♯ ‘ 𝐽 ) ) |
| 48 |
42 47
|
eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐽 ) = ( ( ♯ ‘ 𝐼 ) − 1 ) ) |
| 49 |
48
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐽 ) ) = ( 0 ... ( ( ♯ ‘ 𝐼 ) − 1 ) ) ) |
| 50 |
7 49
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( ( ♯ ‘ 𝐼 ) − 1 ) ) ) |
| 51 |
|
elfzp1b |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( ♯ ‘ 𝐼 ) ∈ ℤ ) → ( 𝐾 ∈ ( 0 ... ( ( ♯ ‘ 𝐼 ) − 1 ) ) ↔ ( 𝐾 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) ) ) |
| 52 |
51
|
biimpa |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ ( ♯ ‘ 𝐼 ) ∈ ℤ ) ∧ 𝐾 ∈ ( 0 ... ( ( ♯ ‘ 𝐼 ) − 1 ) ) ) → ( 𝐾 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) ) |
| 53 |
22 25 50 52
|
syl21anc |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐼 ) ) ) |
| 54 |
15 16 17 18 19 20 2 21 4 5 6 53 8
|
esplyind |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) = ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ) |
| 55 |
9 54
|
eqtrid |
⊢ ( 𝜑 → 𝐹 = ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑄 ‘ ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ) ) |
| 57 |
56
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝑍 ) = ( ( 𝑄 ‘ ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ) ‘ 𝑍 ) ) |
| 58 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 59 |
10
|
fvexi |
⊢ 𝐵 ∈ V |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 61 |
60 2 14
|
elmapdd |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 62 |
11 15 10 58 18 1 2 3 61 16 4
|
evlvarval |
⊢ ( 𝜑 → ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∧ ( ( 𝑄 ‘ ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ) ‘ 𝑍 ) = ( 𝑍 ‘ 𝑌 ) ) ) |
| 63 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 64 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 65 |
22
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 66 |
65 46
|
pncand |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) − 1 ) = 𝐾 ) |
| 67 |
66
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) = ( 𝐸 ‘ 𝐾 ) ) |
| 68 |
6
|
fveq1i |
⊢ ( 𝐸 ‘ 𝐾 ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) |
| 69 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝐽 ) ) ⊆ ℕ0 |
| 70 |
69 7
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 71 |
8 34 21 70 64
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 72 |
68 71
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 73 |
67 72
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 74 |
19 63 2 21 10 5 64 4 73 58
|
extvfvcl |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 75 |
67
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) = ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ 𝐾 ) ) ) |
| 76 |
75
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) = ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ 𝐾 ) ) ) ) |
| 77 |
76
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ‘ 𝑍 ) = ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ 𝐾 ) ) ) ‘ 𝑍 ) ) |
| 78 |
|
eqid |
⊢ ( 𝐼 extendVars 𝑅 ) = ( 𝐼 extendVars 𝑅 ) |
| 79 |
11 12 5 64 10 78 3 2 4 72 14
|
evlextv |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ 𝐾 ) ) ) ‘ 𝑍 ) = ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) |
| 80 |
77 79
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ‘ 𝑍 ) = ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) |
| 81 |
74 80
|
jca |
⊢ ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∧ ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ‘ 𝑍 ) = ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |
| 82 |
11 15 10 58 18 1 2 3 61 62 81
|
evlmulval |
⊢ ( 𝜑 → ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∧ ( ( 𝑄 ‘ ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ) ‘ 𝑍 ) = ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) ) |
| 83 |
6
|
fveq1i |
⊢ ( 𝐸 ‘ ( 𝐾 + 1 ) ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) |
| 84 |
|
peano2nn0 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 85 |
70 84
|
syl |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 86 |
8 34 21 85 64
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 87 |
83 86
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐾 + 1 ) ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 88 |
19 63 2 21 10 5 64 4 87 58
|
extvfvcl |
⊢ ( 𝜑 → ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 89 |
11 12 5 64 10 78 3 2 4 87 14
|
evlextv |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ‘ 𝑍 ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) |
| 90 |
88 89
|
jca |
⊢ ( 𝜑 → ( ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∧ ( ( 𝑄 ‘ ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ‘ 𝑍 ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |
| 91 |
11 15 10 58 17 13 2 3 61 82 90
|
evladdval |
⊢ ( 𝜑 → ( ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ∧ ( ( 𝑄 ‘ ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ) ‘ 𝑍 ) = ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) ) |
| 92 |
91
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( ( ( 𝐼 mVar 𝑅 ) ‘ 𝑌 ) ( .r ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( ( 𝐾 + 1 ) − 1 ) ) ) ) ( +g ‘ ( 𝐼 mPoly 𝑅 ) ) ( ( ( 𝐼 extendVars 𝑅 ) ‘ 𝑌 ) ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) ) ‘ 𝑍 ) = ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |
| 93 |
57 92
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝑍 ) = ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |