Metamath Proof Explorer


Theorem esplyfvn

Description: Express the last elementary symmetric polynomial, evaluated at a given set of points Z , in terms of the last elementary symmetric polynomial with one less variable. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses esplyfvn.1 𝐵 = ( Base ‘ 𝑅 )
esplyfvn.2 + = ( +g𝑅 )
esplyfvn.3 · = ( .r𝑅 )
esplyfvn.4 𝑄 = ( 𝐼 eval 𝑅 )
esplyfvn.5 𝑂 = ( 𝐽 eval 𝑅 )
esplyfvn.6 𝐸 = ( 𝐼 eSymPoly 𝑅 )
esplyfvn.7 𝐹 = ( 𝐽 eSymPoly 𝑅 )
esplyfvn.8 𝐻 = ( ♯ ‘ 𝐼 )
esplyfvn.9 𝐾 = ( ♯ ‘ 𝐽 )
esplyfvn.10 𝐽 = ( 𝐼 ∖ { 𝑌 } )
esplyfvn.11 ( 𝜑𝐼 ∈ Fin )
esplyfvn.12 ( 𝜑𝑅 ∈ CRing )
esplyfvn.13 ( 𝜑𝑌𝐼 )
esplyfvn.14 ( 𝜑𝑍 : 𝐼𝐵 )
Assertion esplyfvn ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸𝐻 ) ) ‘ 𝑍 ) = ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) )

Proof

Step Hyp Ref Expression
1 esplyfvn.1 𝐵 = ( Base ‘ 𝑅 )
2 esplyfvn.2 + = ( +g𝑅 )
3 esplyfvn.3 · = ( .r𝑅 )
4 esplyfvn.4 𝑄 = ( 𝐼 eval 𝑅 )
5 esplyfvn.5 𝑂 = ( 𝐽 eval 𝑅 )
6 esplyfvn.6 𝐸 = ( 𝐼 eSymPoly 𝑅 )
7 esplyfvn.7 𝐹 = ( 𝐽 eSymPoly 𝑅 )
8 esplyfvn.8 𝐻 = ( ♯ ‘ 𝐼 )
9 esplyfvn.9 𝐾 = ( ♯ ‘ 𝐽 )
10 esplyfvn.10 𝐽 = ( 𝐼 ∖ { 𝑌 } )
11 esplyfvn.11 ( 𝜑𝐼 ∈ Fin )
12 esplyfvn.12 ( 𝜑𝑅 ∈ CRing )
13 esplyfvn.13 ( 𝜑𝑌𝐼 )
14 esplyfvn.14 ( 𝜑𝑍 : 𝐼𝐵 )
15 hashdifsn ( ( 𝐼 ∈ Fin ∧ 𝑌𝐼 ) → ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐼 ) − 1 ) )
16 11 13 15 syl2anc ( 𝜑 → ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐼 ) − 1 ) )
17 10 fveq2i ( ♯ ‘ 𝐽 ) = ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) )
18 9 17 eqtri 𝐾 = ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) )
19 8 oveq1i ( 𝐻 − 1 ) = ( ( ♯ ‘ 𝐼 ) − 1 )
20 16 18 19 3eqtr4g ( 𝜑𝐾 = ( 𝐻 − 1 ) )
21 20 oveq1d ( 𝜑 → ( 𝐾 + 1 ) = ( ( 𝐻 − 1 ) + 1 ) )
22 hashcl ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 )
23 11 22 syl ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 )
24 8 23 eqeltrid ( 𝜑𝐻 ∈ ℕ0 )
25 24 nn0cnd ( 𝜑𝐻 ∈ ℂ )
26 1cnd ( 𝜑 → 1 ∈ ℂ )
27 25 26 npcand ( 𝜑 → ( ( 𝐻 − 1 ) + 1 ) = 𝐻 )
28 21 27 eqtr2d ( 𝜑𝐻 = ( 𝐾 + 1 ) )
29 28 fveq2d ( 𝜑 → ( 𝐸𝐻 ) = ( 𝐸 ‘ ( 𝐾 + 1 ) ) )
30 29 fveq2d ( 𝜑 → ( 𝑄 ‘ ( 𝐸𝐻 ) ) = ( 𝑄 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) )
31 30 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸𝐻 ) ) ‘ 𝑍 ) = ( ( 𝑄 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ 𝑍 ) )
32 difssd ( 𝜑 → ( 𝐼 ∖ { 𝑌 } ) ⊆ 𝐼 )
33 10 32 eqsstrid ( 𝜑𝐽𝐼 )
34 11 33 ssfid ( 𝜑𝐽 ∈ Fin )
35 hashcl ( 𝐽 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 )
36 34 35 syl ( 𝜑 → ( ♯ ‘ 𝐽 ) ∈ ℕ0 )
37 9 36 eqeltrid ( 𝜑𝐾 ∈ ℕ0 )
38 nn0fz0 ( 𝐾 ∈ ℕ0𝐾 ∈ ( 0 ... 𝐾 ) )
39 37 38 sylib ( 𝜑𝐾 ∈ ( 0 ... 𝐾 ) )
40 9 oveq2i ( 0 ... 𝐾 ) = ( 0 ... ( ♯ ‘ 𝐽 ) )
41 39 40 eleqtrdi ( 𝜑𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) )
42 eqid { ∈ ( ℕ0m 𝐽 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐽 ) ∣ finSupp 0 }
43 6 fveq1i ( 𝐸 ‘ ( 𝐾 + 1 ) ) = ( ( 𝐼 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) )
44 3 11 12 13 10 7 41 42 43 1 4 5 2 14 esplyindfv ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ 𝑍 ) = ( ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍𝐽 ) ) ) )
45 7 fveq1i ( 𝐹 ‘ ( 𝐾 + 1 ) ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) )
46 12 crngringd ( 𝜑𝑅 ∈ Ring )
47 28 24 eqeltrrd ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ0 )
48 fzp1nel ¬ ( 𝐾 + 1 ) ∈ ( 0 ... 𝐾 )
49 48 a1i ( 𝜑 → ¬ ( 𝐾 + 1 ) ∈ ( 0 ... 𝐾 ) )
50 40 eleq2i ( ( 𝐾 + 1 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝐾 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) )
51 49 50 sylnib ( 𝜑 → ¬ ( 𝐾 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) )
52 47 51 eldifd ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐽 ) ) ) )
53 eqid ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) )
54 42 34 46 52 53 esplyfval2 ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) )
55 45 54 eqtrid ( 𝜑 → ( 𝐹 ‘ ( 𝐾 + 1 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) )
56 eqid ( 𝐽 mPoly 𝑅 ) = ( 𝐽 mPoly 𝑅 )
57 eqid ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) = ( algSc ‘ ( 𝐽 mPoly 𝑅 ) )
58 eqid ( 0g𝑅 ) = ( 0g𝑅 )
59 56 57 58 53 34 46 mplascl0 ( 𝜑 → ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g𝑅 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) )
60 55 59 eqtr4d ( 𝜑 → ( 𝐹 ‘ ( 𝐾 + 1 ) ) = ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g𝑅 ) ) )
61 60 fveq2d ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) = ( 𝑂 ‘ ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g𝑅 ) ) ) )
62 61 fveq1d ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍𝐽 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g𝑅 ) ) ) ‘ ( 𝑍𝐽 ) ) )
63 12 crnggrpd ( 𝜑𝑅 ∈ Grp )
64 1 58 grpidcl ( 𝑅 ∈ Grp → ( 0g𝑅 ) ∈ 𝐵 )
65 63 64 syl ( 𝜑 → ( 0g𝑅 ) ∈ 𝐵 )
66 14 33 fssresd ( 𝜑 → ( 𝑍𝐽 ) : 𝐽𝐵 )
67 5 56 1 57 34 12 65 66 evlscaval ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g𝑅 ) ) ) ‘ ( 𝑍𝐽 ) ) = ( 0g𝑅 ) )
68 62 67 eqtrd ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍𝐽 ) ) = ( 0g𝑅 ) )
69 68 oveq2d ( 𝜑 → ( ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍𝐽 ) ) ) = ( ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) + ( 0g𝑅 ) ) )
70 14 13 ffvelcdmd ( 𝜑 → ( 𝑍𝑌 ) ∈ 𝐵 )
71 eqid ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) )
72 7 fveq1i ( 𝐹𝐾 ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 )
73 42 34 46 37 71 esplympl ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
74 72 73 eqeltrid ( 𝜑 → ( 𝐹𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) )
75 1 fvexi 𝐵 ∈ V
76 75 a1i ( 𝜑𝐵 ∈ V )
77 76 34 66 elmapdd ( 𝜑 → ( 𝑍𝐽 ) ∈ ( 𝐵m 𝐽 ) )
78 5 56 71 1 34 12 74 77 evlcl ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ∈ 𝐵 )
79 1 3 46 70 78 ringcld ( 𝜑 → ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) ∈ 𝐵 )
80 1 2 58 63 79 grpridd ( 𝜑 → ( ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) + ( 0g𝑅 ) ) = ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) )
81 69 80 eqtrd ( 𝜑 → ( ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍𝐽 ) ) ) = ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) )
82 31 44 81 3eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸𝐻 ) ) ‘ 𝑍 ) = ( ( 𝑍𝑌 ) · ( ( 𝑂 ‘ ( 𝐹𝐾 ) ) ‘ ( 𝑍𝐽 ) ) ) )