| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfvn.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
esplyfvn.2 |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
esplyfvn.3 |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
esplyfvn.4 |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 5 |
|
esplyfvn.5 |
⊢ 𝑂 = ( 𝐽 eval 𝑅 ) |
| 6 |
|
esplyfvn.6 |
⊢ 𝐸 = ( 𝐼 eSymPoly 𝑅 ) |
| 7 |
|
esplyfvn.7 |
⊢ 𝐹 = ( 𝐽 eSymPoly 𝑅 ) |
| 8 |
|
esplyfvn.8 |
⊢ 𝐻 = ( ♯ ‘ 𝐼 ) |
| 9 |
|
esplyfvn.9 |
⊢ 𝐾 = ( ♯ ‘ 𝐽 ) |
| 10 |
|
esplyfvn.10 |
⊢ 𝐽 = ( 𝐼 ∖ { 𝑌 } ) |
| 11 |
|
esplyfvn.11 |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 12 |
|
esplyfvn.12 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 13 |
|
esplyfvn.13 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
| 14 |
|
esplyfvn.14 |
⊢ ( 𝜑 → 𝑍 : 𝐼 ⟶ 𝐵 ) |
| 15 |
|
hashdifsn |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑌 ∈ 𝐼 ) → ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐼 ) − 1 ) ) |
| 16 |
11 13 15
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) ) = ( ( ♯ ‘ 𝐼 ) − 1 ) ) |
| 17 |
10
|
fveq2i |
⊢ ( ♯ ‘ 𝐽 ) = ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) ) |
| 18 |
9 17
|
eqtri |
⊢ 𝐾 = ( ♯ ‘ ( 𝐼 ∖ { 𝑌 } ) ) |
| 19 |
8
|
oveq1i |
⊢ ( 𝐻 − 1 ) = ( ( ♯ ‘ 𝐼 ) − 1 ) |
| 20 |
16 18 19
|
3eqtr4g |
⊢ ( 𝜑 → 𝐾 = ( 𝐻 − 1 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝜑 → ( 𝐾 + 1 ) = ( ( 𝐻 − 1 ) + 1 ) ) |
| 22 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 23 |
11 22
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 24 |
8 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ ℕ0 ) |
| 25 |
24
|
nn0cnd |
⊢ ( 𝜑 → 𝐻 ∈ ℂ ) |
| 26 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 27 |
25 26
|
npcand |
⊢ ( 𝜑 → ( ( 𝐻 − 1 ) + 1 ) = 𝐻 ) |
| 28 |
21 27
|
eqtr2d |
⊢ ( 𝜑 → 𝐻 = ( 𝐾 + 1 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐻 ) = ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐸 ‘ 𝐻 ) ) = ( 𝑄 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ) |
| 31 |
30
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸 ‘ 𝐻 ) ) ‘ 𝑍 ) = ( ( 𝑄 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ 𝑍 ) ) |
| 32 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ { 𝑌 } ) ⊆ 𝐼 ) |
| 33 |
10 32
|
eqsstrid |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 34 |
11 33
|
ssfid |
⊢ ( 𝜑 → 𝐽 ∈ Fin ) |
| 35 |
|
hashcl |
⊢ ( 𝐽 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 37 |
9 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 38 |
|
nn0fz0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ 𝐾 ∈ ( 0 ... 𝐾 ) ) |
| 39 |
37 38
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... 𝐾 ) ) |
| 40 |
9
|
oveq2i |
⊢ ( 0 ... 𝐾 ) = ( 0 ... ( ♯ ‘ 𝐽 ) ) |
| 41 |
39 40
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) ) |
| 42 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐽 ) ∣ ℎ finSupp 0 } |
| 43 |
6
|
fveq1i |
⊢ ( 𝐸 ‘ ( 𝐾 + 1 ) ) = ( ( 𝐼 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) |
| 44 |
3 11 12 13 10 7 41 42 43 1 4 5 2 14
|
esplyindfv |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸 ‘ ( 𝐾 + 1 ) ) ) ‘ 𝑍 ) = ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |
| 45 |
7
|
fveq1i |
⊢ ( 𝐹 ‘ ( 𝐾 + 1 ) ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) |
| 46 |
12
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 47 |
28 24
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 48 |
|
fzp1nel |
⊢ ¬ ( 𝐾 + 1 ) ∈ ( 0 ... 𝐾 ) |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → ¬ ( 𝐾 + 1 ) ∈ ( 0 ... 𝐾 ) ) |
| 50 |
40
|
eleq2i |
⊢ ( ( 𝐾 + 1 ) ∈ ( 0 ... 𝐾 ) ↔ ( 𝐾 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) ) |
| 51 |
49 50
|
sylnib |
⊢ ( 𝜑 → ¬ ( 𝐾 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐽 ) ) ) |
| 52 |
47 51
|
eldifd |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐽 ) ) ) ) |
| 53 |
|
eqid |
⊢ ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 54 |
42 34 46 52 53
|
esplyfval2 |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ ( 𝐾 + 1 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 55 |
45 54
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐾 + 1 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 56 |
|
eqid |
⊢ ( 𝐽 mPoly 𝑅 ) = ( 𝐽 mPoly 𝑅 ) |
| 57 |
|
eqid |
⊢ ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) = ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 58 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 59 |
56 57 58 53 34 46
|
mplascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 60 |
55 59
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐾 + 1 ) ) = ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g ‘ 𝑅 ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) = ( 𝑂 ‘ ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g ‘ 𝑅 ) ) ) ) |
| 62 |
61
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) |
| 63 |
12
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 64 |
1 58
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 66 |
14 33
|
fssresd |
⊢ ( 𝜑 → ( 𝑍 ↾ 𝐽 ) : 𝐽 ⟶ 𝐵 ) |
| 67 |
5 56 1 57 34 12 65 66
|
evlscaval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ ( 𝐽 mPoly 𝑅 ) ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) = ( 0g ‘ 𝑅 ) ) |
| 68 |
62 67
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) = ( 0g ‘ 𝑅 ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) = ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( 0g ‘ 𝑅 ) ) ) |
| 70 |
14 13
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑍 ‘ 𝑌 ) ∈ 𝐵 ) |
| 71 |
|
eqid |
⊢ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) |
| 72 |
7
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐾 ) = ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) |
| 73 |
42 34 46 37 71
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐽 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 74 |
72 73
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐽 mPoly 𝑅 ) ) ) |
| 75 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 77 |
76 34 66
|
elmapdd |
⊢ ( 𝜑 → ( 𝑍 ↾ 𝐽 ) ∈ ( 𝐵 ↑m 𝐽 ) ) |
| 78 |
5 56 71 1 34 12 74 77
|
evlcl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ∈ 𝐵 ) |
| 79 |
1 3 46 70 78
|
ringcld |
⊢ ( 𝜑 → ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ∈ 𝐵 ) |
| 80 |
1 2 58 63 79
|
grpridd |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( 0g ‘ 𝑅 ) ) = ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |
| 81 |
69 80
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) + ( ( 𝑂 ‘ ( 𝐹 ‘ ( 𝐾 + 1 ) ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) = ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |
| 82 |
31 44 81
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐸 ‘ 𝐻 ) ) ‘ 𝑍 ) = ( ( 𝑍 ‘ 𝑌 ) · ( ( 𝑂 ‘ ( 𝐹 ‘ 𝐾 ) ) ‘ ( 𝑍 ↾ 𝐽 ) ) ) ) |