| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfvn.1 |
|- B = ( Base ` R ) |
| 2 |
|
esplyfvn.2 |
|- .+ = ( +g ` R ) |
| 3 |
|
esplyfvn.3 |
|- .x. = ( .r ` R ) |
| 4 |
|
esplyfvn.4 |
|- Q = ( I eval R ) |
| 5 |
|
esplyfvn.5 |
|- O = ( J eval R ) |
| 6 |
|
esplyfvn.6 |
|- E = ( I eSymPoly R ) |
| 7 |
|
esplyfvn.7 |
|- F = ( J eSymPoly R ) |
| 8 |
|
esplyfvn.8 |
|- H = ( # ` I ) |
| 9 |
|
esplyfvn.9 |
|- K = ( # ` J ) |
| 10 |
|
esplyfvn.10 |
|- J = ( I \ { Y } ) |
| 11 |
|
esplyfvn.11 |
|- ( ph -> I e. Fin ) |
| 12 |
|
esplyfvn.12 |
|- ( ph -> R e. CRing ) |
| 13 |
|
esplyfvn.13 |
|- ( ph -> Y e. I ) |
| 14 |
|
esplyfvn.14 |
|- ( ph -> Z : I --> B ) |
| 15 |
|
hashdifsn |
|- ( ( I e. Fin /\ Y e. I ) -> ( # ` ( I \ { Y } ) ) = ( ( # ` I ) - 1 ) ) |
| 16 |
11 13 15
|
syl2anc |
|- ( ph -> ( # ` ( I \ { Y } ) ) = ( ( # ` I ) - 1 ) ) |
| 17 |
10
|
fveq2i |
|- ( # ` J ) = ( # ` ( I \ { Y } ) ) |
| 18 |
9 17
|
eqtri |
|- K = ( # ` ( I \ { Y } ) ) |
| 19 |
8
|
oveq1i |
|- ( H - 1 ) = ( ( # ` I ) - 1 ) |
| 20 |
16 18 19
|
3eqtr4g |
|- ( ph -> K = ( H - 1 ) ) |
| 21 |
20
|
oveq1d |
|- ( ph -> ( K + 1 ) = ( ( H - 1 ) + 1 ) ) |
| 22 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 23 |
11 22
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 24 |
8 23
|
eqeltrid |
|- ( ph -> H e. NN0 ) |
| 25 |
24
|
nn0cnd |
|- ( ph -> H e. CC ) |
| 26 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 27 |
25 26
|
npcand |
|- ( ph -> ( ( H - 1 ) + 1 ) = H ) |
| 28 |
21 27
|
eqtr2d |
|- ( ph -> H = ( K + 1 ) ) |
| 29 |
28
|
fveq2d |
|- ( ph -> ( E ` H ) = ( E ` ( K + 1 ) ) ) |
| 30 |
29
|
fveq2d |
|- ( ph -> ( Q ` ( E ` H ) ) = ( Q ` ( E ` ( K + 1 ) ) ) ) |
| 31 |
30
|
fveq1d |
|- ( ph -> ( ( Q ` ( E ` H ) ) ` Z ) = ( ( Q ` ( E ` ( K + 1 ) ) ) ` Z ) ) |
| 32 |
|
difssd |
|- ( ph -> ( I \ { Y } ) C_ I ) |
| 33 |
10 32
|
eqsstrid |
|- ( ph -> J C_ I ) |
| 34 |
11 33
|
ssfid |
|- ( ph -> J e. Fin ) |
| 35 |
|
hashcl |
|- ( J e. Fin -> ( # ` J ) e. NN0 ) |
| 36 |
34 35
|
syl |
|- ( ph -> ( # ` J ) e. NN0 ) |
| 37 |
9 36
|
eqeltrid |
|- ( ph -> K e. NN0 ) |
| 38 |
|
nn0fz0 |
|- ( K e. NN0 <-> K e. ( 0 ... K ) ) |
| 39 |
37 38
|
sylib |
|- ( ph -> K e. ( 0 ... K ) ) |
| 40 |
9
|
oveq2i |
|- ( 0 ... K ) = ( 0 ... ( # ` J ) ) |
| 41 |
39 40
|
eleqtrdi |
|- ( ph -> K e. ( 0 ... ( # ` J ) ) ) |
| 42 |
|
eqid |
|- { h e. ( NN0 ^m J ) | h finSupp 0 } = { h e. ( NN0 ^m J ) | h finSupp 0 } |
| 43 |
6
|
fveq1i |
|- ( E ` ( K + 1 ) ) = ( ( I eSymPoly R ) ` ( K + 1 ) ) |
| 44 |
3 11 12 13 10 7 41 42 43 1 4 5 2 14
|
esplyindfv |
|- ( ph -> ( ( Q ` ( E ` ( K + 1 ) ) ) ` Z ) = ( ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) .+ ( ( O ` ( F ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) ) |
| 45 |
7
|
fveq1i |
|- ( F ` ( K + 1 ) ) = ( ( J eSymPoly R ) ` ( K + 1 ) ) |
| 46 |
12
|
crngringd |
|- ( ph -> R e. Ring ) |
| 47 |
28 24
|
eqeltrrd |
|- ( ph -> ( K + 1 ) e. NN0 ) |
| 48 |
|
fzp1nel |
|- -. ( K + 1 ) e. ( 0 ... K ) |
| 49 |
48
|
a1i |
|- ( ph -> -. ( K + 1 ) e. ( 0 ... K ) ) |
| 50 |
40
|
eleq2i |
|- ( ( K + 1 ) e. ( 0 ... K ) <-> ( K + 1 ) e. ( 0 ... ( # ` J ) ) ) |
| 51 |
49 50
|
sylnib |
|- ( ph -> -. ( K + 1 ) e. ( 0 ... ( # ` J ) ) ) |
| 52 |
47 51
|
eldifd |
|- ( ph -> ( K + 1 ) e. ( NN0 \ ( 0 ... ( # ` J ) ) ) ) |
| 53 |
|
eqid |
|- ( 0g ` ( J mPoly R ) ) = ( 0g ` ( J mPoly R ) ) |
| 54 |
42 34 46 52 53
|
esplyfval2 |
|- ( ph -> ( ( J eSymPoly R ) ` ( K + 1 ) ) = ( 0g ` ( J mPoly R ) ) ) |
| 55 |
45 54
|
eqtrid |
|- ( ph -> ( F ` ( K + 1 ) ) = ( 0g ` ( J mPoly R ) ) ) |
| 56 |
|
eqid |
|- ( J mPoly R ) = ( J mPoly R ) |
| 57 |
|
eqid |
|- ( algSc ` ( J mPoly R ) ) = ( algSc ` ( J mPoly R ) ) |
| 58 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 59 |
56 57 58 53 34 46
|
mplascl0 |
|- ( ph -> ( ( algSc ` ( J mPoly R ) ) ` ( 0g ` R ) ) = ( 0g ` ( J mPoly R ) ) ) |
| 60 |
55 59
|
eqtr4d |
|- ( ph -> ( F ` ( K + 1 ) ) = ( ( algSc ` ( J mPoly R ) ) ` ( 0g ` R ) ) ) |
| 61 |
60
|
fveq2d |
|- ( ph -> ( O ` ( F ` ( K + 1 ) ) ) = ( O ` ( ( algSc ` ( J mPoly R ) ) ` ( 0g ` R ) ) ) ) |
| 62 |
61
|
fveq1d |
|- ( ph -> ( ( O ` ( F ` ( K + 1 ) ) ) ` ( Z |` J ) ) = ( ( O ` ( ( algSc ` ( J mPoly R ) ) ` ( 0g ` R ) ) ) ` ( Z |` J ) ) ) |
| 63 |
12
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 64 |
1 58
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. B ) |
| 65 |
63 64
|
syl |
|- ( ph -> ( 0g ` R ) e. B ) |
| 66 |
14 33
|
fssresd |
|- ( ph -> ( Z |` J ) : J --> B ) |
| 67 |
5 56 1 57 34 12 65 66
|
evlscaval |
|- ( ph -> ( ( O ` ( ( algSc ` ( J mPoly R ) ) ` ( 0g ` R ) ) ) ` ( Z |` J ) ) = ( 0g ` R ) ) |
| 68 |
62 67
|
eqtrd |
|- ( ph -> ( ( O ` ( F ` ( K + 1 ) ) ) ` ( Z |` J ) ) = ( 0g ` R ) ) |
| 69 |
68
|
oveq2d |
|- ( ph -> ( ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) .+ ( ( O ` ( F ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) = ( ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) .+ ( 0g ` R ) ) ) |
| 70 |
14 13
|
ffvelcdmd |
|- ( ph -> ( Z ` Y ) e. B ) |
| 71 |
|
eqid |
|- ( Base ` ( J mPoly R ) ) = ( Base ` ( J mPoly R ) ) |
| 72 |
7
|
fveq1i |
|- ( F ` K ) = ( ( J eSymPoly R ) ` K ) |
| 73 |
42 34 46 37 71
|
esplympl |
|- ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) |
| 74 |
72 73
|
eqeltrid |
|- ( ph -> ( F ` K ) e. ( Base ` ( J mPoly R ) ) ) |
| 75 |
1
|
fvexi |
|- B e. _V |
| 76 |
75
|
a1i |
|- ( ph -> B e. _V ) |
| 77 |
76 34 66
|
elmapdd |
|- ( ph -> ( Z |` J ) e. ( B ^m J ) ) |
| 78 |
5 56 71 1 34 12 74 77
|
evlcl |
|- ( ph -> ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) e. B ) |
| 79 |
1 3 46 70 78
|
ringcld |
|- ( ph -> ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) e. B ) |
| 80 |
1 2 58 63 79
|
grpridd |
|- ( ph -> ( ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) .+ ( 0g ` R ) ) = ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) ) |
| 81 |
69 80
|
eqtrd |
|- ( ph -> ( ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) .+ ( ( O ` ( F ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) = ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) ) |
| 82 |
31 44 81
|
3eqtrd |
|- ( ph -> ( ( Q ` ( E ` H ) ) ` Z ) = ( ( Z ` Y ) .x. ( ( O ` ( F ` K ) ) ` ( Z |` J ) ) ) ) |