| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyindfv.m |
|- .x. = ( .r ` R ) |
| 2 |
|
esplyindfv.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplyindfv.r |
|- ( ph -> R e. CRing ) |
| 4 |
|
esplyindfv.y |
|- ( ph -> Y e. I ) |
| 5 |
|
esplyindfv.j |
|- J = ( I \ { Y } ) |
| 6 |
|
esplyindfv.e |
|- E = ( J eSymPoly R ) |
| 7 |
|
esplyindfv.k |
|- ( ph -> K e. ( 0 ... ( # ` J ) ) ) |
| 8 |
|
esplyindfv.c |
|- C = { h e. ( NN0 ^m J ) | h finSupp 0 } |
| 9 |
|
esplyindfv.f |
|- F = ( ( I eSymPoly R ) ` ( K + 1 ) ) |
| 10 |
|
esplyindfv.b |
|- B = ( Base ` R ) |
| 11 |
|
esplyindfv.q |
|- Q = ( I eval R ) |
| 12 |
|
esplyindfv.o |
|- O = ( J eval R ) |
| 13 |
|
esplyindfv.p |
|- .+ = ( +g ` R ) |
| 14 |
|
esplyindfv.z |
|- ( ph -> Z : I --> B ) |
| 15 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 16 |
|
eqid |
|- ( I mVar R ) = ( I mVar R ) |
| 17 |
|
eqid |
|- ( +g ` ( I mPoly R ) ) = ( +g ` ( I mPoly R ) ) |
| 18 |
|
eqid |
|- ( .r ` ( I mPoly R ) ) = ( .r ` ( I mPoly R ) ) |
| 19 |
|
eqid |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 20 |
|
eqid |
|- ( ( I extendVars R ) ` Y ) = ( ( I extendVars R ) ` Y ) |
| 21 |
3
|
crngringd |
|- ( ph -> R e. Ring ) |
| 22 |
7
|
elfzelzd |
|- ( ph -> K e. ZZ ) |
| 23 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 24 |
2 23
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 25 |
24
|
nn0zd |
|- ( ph -> ( # ` I ) e. ZZ ) |
| 26 |
5
|
uneq1i |
|- ( J u. { Y } ) = ( ( I \ { Y } ) u. { Y } ) |
| 27 |
4
|
snssd |
|- ( ph -> { Y } C_ I ) |
| 28 |
|
undifr |
|- ( { Y } C_ I <-> ( ( I \ { Y } ) u. { Y } ) = I ) |
| 29 |
27 28
|
sylib |
|- ( ph -> ( ( I \ { Y } ) u. { Y } ) = I ) |
| 30 |
26 29
|
eqtrid |
|- ( ph -> ( J u. { Y } ) = I ) |
| 31 |
30
|
fveq2d |
|- ( ph -> ( # ` ( J u. { Y } ) ) = ( # ` I ) ) |
| 32 |
|
difssd |
|- ( ph -> ( I \ { Y } ) C_ I ) |
| 33 |
5 32
|
eqsstrid |
|- ( ph -> J C_ I ) |
| 34 |
2 33
|
ssfid |
|- ( ph -> J e. Fin ) |
| 35 |
|
neldifsnd |
|- ( ph -> -. Y e. ( I \ { Y } ) ) |
| 36 |
5
|
eleq2i |
|- ( Y e. J <-> Y e. ( I \ { Y } ) ) |
| 37 |
35 36
|
sylnibr |
|- ( ph -> -. Y e. J ) |
| 38 |
|
hashunsng |
|- ( Y e. I -> ( ( J e. Fin /\ -. Y e. J ) -> ( # ` ( J u. { Y } ) ) = ( ( # ` J ) + 1 ) ) ) |
| 39 |
38
|
imp |
|- ( ( Y e. I /\ ( J e. Fin /\ -. Y e. J ) ) -> ( # ` ( J u. { Y } ) ) = ( ( # ` J ) + 1 ) ) |
| 40 |
4 34 37 39
|
syl12anc |
|- ( ph -> ( # ` ( J u. { Y } ) ) = ( ( # ` J ) + 1 ) ) |
| 41 |
31 40
|
eqtr3d |
|- ( ph -> ( # ` I ) = ( ( # ` J ) + 1 ) ) |
| 42 |
41
|
oveq1d |
|- ( ph -> ( ( # ` I ) - 1 ) = ( ( ( # ` J ) + 1 ) - 1 ) ) |
| 43 |
|
hashcl |
|- ( J e. Fin -> ( # ` J ) e. NN0 ) |
| 44 |
34 43
|
syl |
|- ( ph -> ( # ` J ) e. NN0 ) |
| 45 |
44
|
nn0cnd |
|- ( ph -> ( # ` J ) e. CC ) |
| 46 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 47 |
45 46
|
pncand |
|- ( ph -> ( ( ( # ` J ) + 1 ) - 1 ) = ( # ` J ) ) |
| 48 |
42 47
|
eqtr2d |
|- ( ph -> ( # ` J ) = ( ( # ` I ) - 1 ) ) |
| 49 |
48
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` J ) ) = ( 0 ... ( ( # ` I ) - 1 ) ) ) |
| 50 |
7 49
|
eleqtrd |
|- ( ph -> K e. ( 0 ... ( ( # ` I ) - 1 ) ) ) |
| 51 |
|
elfzp1b |
|- ( ( K e. ZZ /\ ( # ` I ) e. ZZ ) -> ( K e. ( 0 ... ( ( # ` I ) - 1 ) ) <-> ( K + 1 ) e. ( 1 ... ( # ` I ) ) ) ) |
| 52 |
51
|
biimpa |
|- ( ( ( K e. ZZ /\ ( # ` I ) e. ZZ ) /\ K e. ( 0 ... ( ( # ` I ) - 1 ) ) ) -> ( K + 1 ) e. ( 1 ... ( # ` I ) ) ) |
| 53 |
22 25 50 52
|
syl21anc |
|- ( ph -> ( K + 1 ) e. ( 1 ... ( # ` I ) ) ) |
| 54 |
15 16 17 18 19 20 2 21 4 5 6 53 8
|
esplyind |
|- ( ph -> ( ( I eSymPoly R ) ` ( K + 1 ) ) = ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ) |
| 55 |
9 54
|
eqtrid |
|- ( ph -> F = ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ) |
| 56 |
55
|
fveq2d |
|- ( ph -> ( Q ` F ) = ( Q ` ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ) ) |
| 57 |
56
|
fveq1d |
|- ( ph -> ( ( Q ` F ) ` Z ) = ( ( Q ` ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ) ` Z ) ) |
| 58 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
| 59 |
10
|
fvexi |
|- B e. _V |
| 60 |
59
|
a1i |
|- ( ph -> B e. _V ) |
| 61 |
60 2 14
|
elmapdd |
|- ( ph -> Z e. ( B ^m I ) ) |
| 62 |
11 15 10 58 18 1 2 3 61 16 4
|
evlvarval |
|- ( ph -> ( ( ( I mVar R ) ` Y ) e. ( Base ` ( I mPoly R ) ) /\ ( ( Q ` ( ( I mVar R ) ` Y ) ) ` Z ) = ( Z ` Y ) ) ) |
| 63 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 64 |
|
eqid |
|- ( Base ` ( J mPoly R ) ) = ( Base ` ( J mPoly R ) ) |
| 65 |
22
|
zcnd |
|- ( ph -> K e. CC ) |
| 66 |
65 46
|
pncand |
|- ( ph -> ( ( K + 1 ) - 1 ) = K ) |
| 67 |
66
|
fveq2d |
|- ( ph -> ( E ` ( ( K + 1 ) - 1 ) ) = ( E ` K ) ) |
| 68 |
6
|
fveq1i |
|- ( E ` K ) = ( ( J eSymPoly R ) ` K ) |
| 69 |
|
fz0ssnn0 |
|- ( 0 ... ( # ` J ) ) C_ NN0 |
| 70 |
69 7
|
sselid |
|- ( ph -> K e. NN0 ) |
| 71 |
8 34 21 70 64
|
esplympl |
|- ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) |
| 72 |
68 71
|
eqeltrid |
|- ( ph -> ( E ` K ) e. ( Base ` ( J mPoly R ) ) ) |
| 73 |
67 72
|
eqeltrd |
|- ( ph -> ( E ` ( ( K + 1 ) - 1 ) ) e. ( Base ` ( J mPoly R ) ) ) |
| 74 |
19 63 2 21 10 5 64 4 73 58
|
extvfvcl |
|- ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) e. ( Base ` ( I mPoly R ) ) ) |
| 75 |
67
|
fveq2d |
|- ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) = ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) ) |
| 76 |
75
|
fveq2d |
|- ( ph -> ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) = ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) ) ) |
| 77 |
76
|
fveq1d |
|- ( ph -> ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ` Z ) = ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) ) ` Z ) ) |
| 78 |
|
eqid |
|- ( I extendVars R ) = ( I extendVars R ) |
| 79 |
11 12 5 64 10 78 3 2 4 72 14
|
evlextv |
|- ( ph -> ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` K ) ) ) ` Z ) = ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) |
| 80 |
77 79
|
eqtrd |
|- ( ph -> ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ` Z ) = ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) |
| 81 |
74 80
|
jca |
|- ( ph -> ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) e. ( Base ` ( I mPoly R ) ) /\ ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ` Z ) = ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) ) |
| 82 |
11 15 10 58 18 1 2 3 61 62 81
|
evlmulval |
|- ( ph -> ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) e. ( Base ` ( I mPoly R ) ) /\ ( ( Q ` ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ) ` Z ) = ( ( Z ` Y ) .x. ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) ) ) |
| 83 |
6
|
fveq1i |
|- ( E ` ( K + 1 ) ) = ( ( J eSymPoly R ) ` ( K + 1 ) ) |
| 84 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
| 85 |
70 84
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
| 86 |
8 34 21 85 64
|
esplympl |
|- ( ph -> ( ( J eSymPoly R ) ` ( K + 1 ) ) e. ( Base ` ( J mPoly R ) ) ) |
| 87 |
83 86
|
eqeltrid |
|- ( ph -> ( E ` ( K + 1 ) ) e. ( Base ` ( J mPoly R ) ) ) |
| 88 |
19 63 2 21 10 5 64 4 87 58
|
extvfvcl |
|- ( ph -> ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) e. ( Base ` ( I mPoly R ) ) ) |
| 89 |
11 12 5 64 10 78 3 2 4 87 14
|
evlextv |
|- ( ph -> ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ` Z ) = ( ( O ` ( E ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) |
| 90 |
88 89
|
jca |
|- ( ph -> ( ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) e. ( Base ` ( I mPoly R ) ) /\ ( ( Q ` ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ` Z ) = ( ( O ` ( E ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) ) |
| 91 |
11 15 10 58 17 13 2 3 61 82 90
|
evladdval |
|- ( ph -> ( ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) e. ( Base ` ( I mPoly R ) ) /\ ( ( Q ` ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ) ` Z ) = ( ( ( Z ` Y ) .x. ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) .+ ( ( O ` ( E ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) ) ) |
| 92 |
91
|
simprd |
|- ( ph -> ( ( Q ` ( ( ( ( I mVar R ) ` Y ) ( .r ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( ( K + 1 ) - 1 ) ) ) ) ( +g ` ( I mPoly R ) ) ( ( ( I extendVars R ) ` Y ) ` ( E ` ( K + 1 ) ) ) ) ) ` Z ) = ( ( ( Z ` Y ) .x. ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) .+ ( ( O ` ( E ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) ) |
| 93 |
57 92
|
eqtrd |
|- ( ph -> ( ( Q ` F ) ` Z ) = ( ( ( Z ` Y ) .x. ( ( O ` ( E ` K ) ) ` ( Z |` J ) ) ) .+ ( ( O ` ( E ` ( K + 1 ) ) ) ` ( Z |` J ) ) ) ) |