| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfvn.1 |
|
| 2 |
|
esplyfvn.2 |
|
| 3 |
|
esplyfvn.3 |
|
| 4 |
|
esplyfvn.4 |
|
| 5 |
|
esplyfvn.5 |
|
| 6 |
|
esplyfvn.6 |
Could not format E = ( I eSymPoly R ) : No typesetting found for |- E = ( I eSymPoly R ) with typecode |- |
| 7 |
|
esplyfvn.7 |
Could not format F = ( J eSymPoly R ) : No typesetting found for |- F = ( J eSymPoly R ) with typecode |- |
| 8 |
|
esplyfvn.8 |
|
| 9 |
|
esplyfvn.9 |
|
| 10 |
|
esplyfvn.10 |
|
| 11 |
|
esplyfvn.11 |
|
| 12 |
|
esplyfvn.12 |
|
| 13 |
|
esplyfvn.13 |
|
| 14 |
|
esplyfvn.14 |
|
| 15 |
|
hashdifsn |
|
| 16 |
11 13 15
|
syl2anc |
|
| 17 |
10
|
fveq2i |
|
| 18 |
9 17
|
eqtri |
|
| 19 |
8
|
oveq1i |
|
| 20 |
16 18 19
|
3eqtr4g |
|
| 21 |
20
|
oveq1d |
|
| 22 |
|
hashcl |
|
| 23 |
11 22
|
syl |
|
| 24 |
8 23
|
eqeltrid |
|
| 25 |
24
|
nn0cnd |
|
| 26 |
|
1cnd |
|
| 27 |
25 26
|
npcand |
|
| 28 |
21 27
|
eqtr2d |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
fveq2d |
|
| 31 |
30
|
fveq1d |
|
| 32 |
|
difssd |
|
| 33 |
10 32
|
eqsstrid |
|
| 34 |
11 33
|
ssfid |
|
| 35 |
|
hashcl |
|
| 36 |
34 35
|
syl |
|
| 37 |
9 36
|
eqeltrid |
|
| 38 |
|
nn0fz0 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
9
|
oveq2i |
|
| 41 |
39 40
|
eleqtrdi |
|
| 42 |
|
eqid |
|
| 43 |
6
|
fveq1i |
Could not format ( E ` ( K + 1 ) ) = ( ( I eSymPoly R ) ` ( K + 1 ) ) : No typesetting found for |- ( E ` ( K + 1 ) ) = ( ( I eSymPoly R ) ` ( K + 1 ) ) with typecode |- |
| 44 |
3 11 12 13 10 7 41 42 43 1 4 5 2 14
|
esplyindfv |
|
| 45 |
7
|
fveq1i |
Could not format ( F ` ( K + 1 ) ) = ( ( J eSymPoly R ) ` ( K + 1 ) ) : No typesetting found for |- ( F ` ( K + 1 ) ) = ( ( J eSymPoly R ) ` ( K + 1 ) ) with typecode |- |
| 46 |
12
|
crngringd |
|
| 47 |
28 24
|
eqeltrrd |
|
| 48 |
|
fzp1nel |
|
| 49 |
48
|
a1i |
|
| 50 |
40
|
eleq2i |
|
| 51 |
49 50
|
sylnib |
|
| 52 |
47 51
|
eldifd |
|
| 53 |
|
eqid |
|
| 54 |
42 34 46 52 53
|
esplyfval2 |
Could not format ( ph -> ( ( J eSymPoly R ) ` ( K + 1 ) ) = ( 0g ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` ( K + 1 ) ) = ( 0g ` ( J mPoly R ) ) ) with typecode |- |
| 55 |
45 54
|
eqtrid |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
56 57 58 53 34 46
|
mplascl0 |
|
| 60 |
55 59
|
eqtr4d |
|
| 61 |
60
|
fveq2d |
|
| 62 |
61
|
fveq1d |
|
| 63 |
12
|
crnggrpd |
|
| 64 |
1 58
|
grpidcl |
|
| 65 |
63 64
|
syl |
|
| 66 |
14 33
|
fssresd |
|
| 67 |
5 56 1 57 34 12 65 66
|
evlscaval |
|
| 68 |
62 67
|
eqtrd |
|
| 69 |
68
|
oveq2d |
|
| 70 |
14 13
|
ffvelcdmd |
|
| 71 |
|
eqid |
|
| 72 |
7
|
fveq1i |
Could not format ( F ` K ) = ( ( J eSymPoly R ) ` K ) : No typesetting found for |- ( F ` K ) = ( ( J eSymPoly R ) ` K ) with typecode |- |
| 73 |
42 34 46 37 71
|
esplympl |
Could not format ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) with typecode |- |
| 74 |
72 73
|
eqeltrid |
|
| 75 |
1
|
fvexi |
|
| 76 |
75
|
a1i |
|
| 77 |
76 34 66
|
elmapdd |
|
| 78 |
5 56 71 1 34 12 74 77
|
evlcl |
|
| 79 |
1 3 46 70 78
|
ringcld |
|
| 80 |
1 2 58 63 79
|
grpridd |
|
| 81 |
69 80
|
eqtrd |
|
| 82 |
31 44 81
|
3eqtrd |
|