Metamath Proof Explorer


Theorem esplyfvn

Description: Express the last elementary symmetric polynomial, evaluated at a given set of points Z , in terms of the last elementary symmetric polynomial with one less variable. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses esplyfvn.1 B = Base R
esplyfvn.2 + ˙ = + R
esplyfvn.3 · ˙ = R
esplyfvn.4 Q = I eval R
esplyfvn.5 O = J eval R
esplyfvn.6 No typesetting found for |- E = ( I eSymPoly R ) with typecode |-
esplyfvn.7 No typesetting found for |- F = ( J eSymPoly R ) with typecode |-
esplyfvn.8 H = I
esplyfvn.9 K = J
esplyfvn.10 J = I Y
esplyfvn.11 φ I Fin
esplyfvn.12 φ R CRing
esplyfvn.13 φ Y I
esplyfvn.14 φ Z : I B
Assertion esplyfvn φ Q E H Z = Z Y · ˙ O F K Z J

Proof

Step Hyp Ref Expression
1 esplyfvn.1 B = Base R
2 esplyfvn.2 + ˙ = + R
3 esplyfvn.3 · ˙ = R
4 esplyfvn.4 Q = I eval R
5 esplyfvn.5 O = J eval R
6 esplyfvn.6 Could not format E = ( I eSymPoly R ) : No typesetting found for |- E = ( I eSymPoly R ) with typecode |-
7 esplyfvn.7 Could not format F = ( J eSymPoly R ) : No typesetting found for |- F = ( J eSymPoly R ) with typecode |-
8 esplyfvn.8 H = I
9 esplyfvn.9 K = J
10 esplyfvn.10 J = I Y
11 esplyfvn.11 φ I Fin
12 esplyfvn.12 φ R CRing
13 esplyfvn.13 φ Y I
14 esplyfvn.14 φ Z : I B
15 hashdifsn I Fin Y I I Y = I 1
16 11 13 15 syl2anc φ I Y = I 1
17 10 fveq2i J = I Y
18 9 17 eqtri K = I Y
19 8 oveq1i H 1 = I 1
20 16 18 19 3eqtr4g φ K = H 1
21 20 oveq1d φ K + 1 = H - 1 + 1
22 hashcl I Fin I 0
23 11 22 syl φ I 0
24 8 23 eqeltrid φ H 0
25 24 nn0cnd φ H
26 1cnd φ 1
27 25 26 npcand φ H - 1 + 1 = H
28 21 27 eqtr2d φ H = K + 1
29 28 fveq2d φ E H = E K + 1
30 29 fveq2d φ Q E H = Q E K + 1
31 30 fveq1d φ Q E H Z = Q E K + 1 Z
32 difssd φ I Y I
33 10 32 eqsstrid φ J I
34 11 33 ssfid φ J Fin
35 hashcl J Fin J 0
36 34 35 syl φ J 0
37 9 36 eqeltrid φ K 0
38 nn0fz0 K 0 K 0 K
39 37 38 sylib φ K 0 K
40 9 oveq2i 0 K = 0 J
41 39 40 eleqtrdi φ K 0 J
42 eqid h 0 J | finSupp 0 h = h 0 J | finSupp 0 h
43 6 fveq1i Could not format ( E ` ( K + 1 ) ) = ( ( I eSymPoly R ) ` ( K + 1 ) ) : No typesetting found for |- ( E ` ( K + 1 ) ) = ( ( I eSymPoly R ) ` ( K + 1 ) ) with typecode |-
44 3 11 12 13 10 7 41 42 43 1 4 5 2 14 esplyindfv φ Q E K + 1 Z = Z Y · ˙ O F K Z J + ˙ O F K + 1 Z J
45 7 fveq1i Could not format ( F ` ( K + 1 ) ) = ( ( J eSymPoly R ) ` ( K + 1 ) ) : No typesetting found for |- ( F ` ( K + 1 ) ) = ( ( J eSymPoly R ) ` ( K + 1 ) ) with typecode |-
46 12 crngringd φ R Ring
47 28 24 eqeltrrd φ K + 1 0
48 fzp1nel ¬ K + 1 0 K
49 48 a1i φ ¬ K + 1 0 K
50 40 eleq2i K + 1 0 K K + 1 0 J
51 49 50 sylnib φ ¬ K + 1 0 J
52 47 51 eldifd φ K + 1 0 0 J
53 eqid 0 J mPoly R = 0 J mPoly R
54 42 34 46 52 53 esplyfval2 Could not format ( ph -> ( ( J eSymPoly R ) ` ( K + 1 ) ) = ( 0g ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` ( K + 1 ) ) = ( 0g ` ( J mPoly R ) ) ) with typecode |-
55 45 54 eqtrid φ F K + 1 = 0 J mPoly R
56 eqid J mPoly R = J mPoly R
57 eqid algSc J mPoly R = algSc J mPoly R
58 eqid 0 R = 0 R
59 56 57 58 53 34 46 mplascl0 φ algSc J mPoly R 0 R = 0 J mPoly R
60 55 59 eqtr4d φ F K + 1 = algSc J mPoly R 0 R
61 60 fveq2d φ O F K + 1 = O algSc J mPoly R 0 R
62 61 fveq1d φ O F K + 1 Z J = O algSc J mPoly R 0 R Z J
63 12 crnggrpd φ R Grp
64 1 58 grpidcl R Grp 0 R B
65 63 64 syl φ 0 R B
66 14 33 fssresd φ Z J : J B
67 5 56 1 57 34 12 65 66 evlscaval φ O algSc J mPoly R 0 R Z J = 0 R
68 62 67 eqtrd φ O F K + 1 Z J = 0 R
69 68 oveq2d φ Z Y · ˙ O F K Z J + ˙ O F K + 1 Z J = Z Y · ˙ O F K Z J + ˙ 0 R
70 14 13 ffvelcdmd φ Z Y B
71 eqid Base J mPoly R = Base J mPoly R
72 7 fveq1i Could not format ( F ` K ) = ( ( J eSymPoly R ) ` K ) : No typesetting found for |- ( F ` K ) = ( ( J eSymPoly R ) ` K ) with typecode |-
73 42 34 46 37 71 esplympl Could not format ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` K ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
74 72 73 eqeltrid φ F K Base J mPoly R
75 1 fvexi B V
76 75 a1i φ B V
77 76 34 66 elmapdd φ Z J B J
78 5 56 71 1 34 12 74 77 evlcl φ O F K Z J B
79 1 3 46 70 78 ringcld φ Z Y · ˙ O F K Z J B
80 1 2 58 63 79 grpridd φ Z Y · ˙ O F K Z J + ˙ 0 R = Z Y · ˙ O F K Z J
81 69 80 eqtrd φ Z Y · ˙ O F K Z J + ˙ O F K + 1 Z J = Z Y · ˙ O F K Z J
82 31 44 81 3eqtrd φ Q E H Z = Z Y · ˙ O F K Z J