Metamath Proof Explorer


Theorem vietadeg1

Description: The degree of a product of H of linear polynomials of the form X - Z is H . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses vieta.w
|- W = ( Poly1 ` R )
vieta.b
|- B = ( Base ` R )
vieta.3
|- .- = ( -g ` W )
vieta.m
|- M = ( mulGrp ` W )
vieta.q
|- Q = ( I eval R )
vieta.e
|- E = ( I eSymPoly R )
vieta.n
|- N = ( invg ` R )
vieta.1
|- .1. = ( 1r ` R )
vieta.t
|- .x. = ( .r ` R )
vieta.x
|- X = ( var1 ` R )
vieta.a
|- A = ( algSc ` W )
vieta.p
|- .^ = ( .g ` ( mulGrp ` R ) )
vieta.h
|- H = ( # ` I )
vieta.i
|- ( ph -> I e. Fin )
vieta.r
|- ( ph -> R e. IDomn )
vieta.z
|- ( ph -> Z : I --> B )
vieta.f
|- F = ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) )
vietadeg1.1
|- D = ( deg1 ` R )
Assertion vietadeg1
|- ( ph -> ( D ` F ) = H )

Proof

Step Hyp Ref Expression
1 vieta.w
 |-  W = ( Poly1 ` R )
2 vieta.b
 |-  B = ( Base ` R )
3 vieta.3
 |-  .- = ( -g ` W )
4 vieta.m
 |-  M = ( mulGrp ` W )
5 vieta.q
 |-  Q = ( I eval R )
6 vieta.e
 |-  E = ( I eSymPoly R )
7 vieta.n
 |-  N = ( invg ` R )
8 vieta.1
 |-  .1. = ( 1r ` R )
9 vieta.t
 |-  .x. = ( .r ` R )
10 vieta.x
 |-  X = ( var1 ` R )
11 vieta.a
 |-  A = ( algSc ` W )
12 vieta.p
 |-  .^ = ( .g ` ( mulGrp ` R ) )
13 vieta.h
 |-  H = ( # ` I )
14 vieta.i
 |-  ( ph -> I e. Fin )
15 vieta.r
 |-  ( ph -> R e. IDomn )
16 vieta.z
 |-  ( ph -> Z : I --> B )
17 vieta.f
 |-  F = ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) )
18 vietadeg1.1
 |-  D = ( deg1 ` R )
19 17 fveq2i
 |-  ( D ` F ) = ( D ` ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) )
20 eqid
 |-  ( Base ` W ) = ( Base ` W )
21 eqid
 |-  ( 0g ` W ) = ( 0g ` W )
22 15 idomringd
 |-  ( ph -> R e. Ring )
23 1 ply1ring
 |-  ( R e. Ring -> W e. Ring )
24 ringgrp
 |-  ( W e. Ring -> W e. Grp )
25 22 23 24 3syl
 |-  ( ph -> W e. Grp )
26 25 adantr
 |-  ( ( ph /\ n e. I ) -> W e. Grp )
27 10 1 20 vr1cl
 |-  ( R e. Ring -> X e. ( Base ` W ) )
28 22 27 syl
 |-  ( ph -> X e. ( Base ` W ) )
29 28 adantr
 |-  ( ( ph /\ n e. I ) -> X e. ( Base ` W ) )
30 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
31 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
32 15 idomcringd
 |-  ( ph -> R e. CRing )
33 1 ply1assa
 |-  ( R e. CRing -> W e. AssAlg )
34 32 33 syl
 |-  ( ph -> W e. AssAlg )
35 34 adantr
 |-  ( ( ph /\ n e. I ) -> W e. AssAlg )
36 16 ffvelcdmda
 |-  ( ( ph /\ n e. I ) -> ( Z ` n ) e. B )
37 1 ply1sca
 |-  ( R e. IDomn -> R = ( Scalar ` W ) )
38 15 37 syl
 |-  ( ph -> R = ( Scalar ` W ) )
39 38 fveq2d
 |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` W ) ) )
40 2 39 eqtrid
 |-  ( ph -> B = ( Base ` ( Scalar ` W ) ) )
41 40 adantr
 |-  ( ( ph /\ n e. I ) -> B = ( Base ` ( Scalar ` W ) ) )
42 36 41 eleqtrd
 |-  ( ( ph /\ n e. I ) -> ( Z ` n ) e. ( Base ` ( Scalar ` W ) ) )
43 11 30 31 35 42 asclelbas
 |-  ( ( ph /\ n e. I ) -> ( A ` ( Z ` n ) ) e. ( Base ` W ) )
44 20 3 26 29 43 grpsubcld
 |-  ( ( ph /\ n e. I ) -> ( X .- ( A ` ( Z ` n ) ) ) e. ( Base ` W ) )
45 15 idomdomd
 |-  ( ph -> R e. Domn )
46 domnnzr
 |-  ( R e. Domn -> R e. NzRing )
47 45 46 syl
 |-  ( ph -> R e. NzRing )
48 18 1 10 47 deg1vr
 |-  ( ph -> ( D ` X ) = 1 )
49 48 ad2antrr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) = 1 )
50 18 1 20 deg1cl
 |-  ( X e. ( Base ` W ) -> ( D ` X ) e. ( NN0 u. { -oo } ) )
51 28 50 syl
 |-  ( ph -> ( D ` X ) e. ( NN0 u. { -oo } ) )
52 51 nn0mnfxrd
 |-  ( ph -> ( D ` X ) e. RR* )
53 52 ad2antrr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) e. RR* )
54 49 53 eqeltrrd
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> 1 e. RR* )
55 51 ad2antrr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) e. ( NN0 u. { -oo } ) )
56 0zd
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> 0 e. ZZ )
57 26 adantr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> W e. Grp )
58 29 adantr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> X e. ( Base ` W ) )
59 43 adantr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( A ` ( Z ` n ) ) e. ( Base ` W ) )
60 simpr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) )
61 20 21 3 grpsubeq0
 |-  ( ( W e. Grp /\ X e. ( Base ` W ) /\ ( A ` ( Z ` n ) ) e. ( Base ` W ) ) -> ( ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) <-> X = ( A ` ( Z ` n ) ) ) )
62 61 biimpa
 |-  ( ( ( W e. Grp /\ X e. ( Base ` W ) /\ ( A ` ( Z ` n ) ) e. ( Base ` W ) ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> X = ( A ` ( Z ` n ) ) )
63 57 58 59 60 62 syl31anc
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> X = ( A ` ( Z ` n ) ) )
64 63 fveq2d
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) = ( D ` ( A ` ( Z ` n ) ) ) )
65 22 adantr
 |-  ( ( ph /\ n e. I ) -> R e. Ring )
66 18 1 2 11 deg1sclle
 |-  ( ( R e. Ring /\ ( Z ` n ) e. B ) -> ( D ` ( A ` ( Z ` n ) ) ) <_ 0 )
67 65 36 66 syl2anc
 |-  ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) <_ 0 )
68 67 adantr
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` ( A ` ( Z ` n ) ) ) <_ 0 )
69 64 68 eqbrtrd
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) <_ 0 )
70 degltp1le
 |-  ( ( ( D ` X ) e. ( NN0 u. { -oo } ) /\ 0 e. ZZ ) -> ( ( D ` X ) < ( 0 + 1 ) <-> ( D ` X ) <_ 0 ) )
71 70 biimpar
 |-  ( ( ( ( D ` X ) e. ( NN0 u. { -oo } ) /\ 0 e. ZZ ) /\ ( D ` X ) <_ 0 ) -> ( D ` X ) < ( 0 + 1 ) )
72 55 56 69 71 syl21anc
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) < ( 0 + 1 ) )
73 0p1e1
 |-  ( 0 + 1 ) = 1
74 72 73 breqtrdi
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) < 1 )
75 53 54 74 xrgtned
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> 1 =/= ( D ` X ) )
76 75 necomd
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) =/= 1 )
77 76 neneqd
 |-  ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> -. ( D ` X ) = 1 )
78 49 77 pm2.65da
 |-  ( ( ph /\ n e. I ) -> -. ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) )
79 78 neqned
 |-  ( ( ph /\ n e. I ) -> ( X .- ( A ` ( Z ` n ) ) ) =/= ( 0g ` W ) )
80 44 79 eldifsnd
 |-  ( ( ph /\ n e. I ) -> ( X .- ( A ` ( Z ` n ) ) ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) )
81 80 fmpttd
 |-  ( ph -> ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) : I --> ( ( Base ` W ) \ { ( 0g ` W ) } ) )
82 18 1 20 4 21 14 15 81 deg1prod
 |-  ( ph -> ( D ` ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ) = sum_ k e. I ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) )
83 eqid
 |-  ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) = ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) )
84 2fveq3
 |-  ( n = k -> ( A ` ( Z ` n ) ) = ( A ` ( Z ` k ) ) )
85 84 oveq2d
 |-  ( n = k -> ( X .- ( A ` ( Z ` n ) ) ) = ( X .- ( A ` ( Z ` k ) ) ) )
86 simpr
 |-  ( ( ph /\ k e. I ) -> k e. I )
87 ovexd
 |-  ( ( ph /\ k e. I ) -> ( X .- ( A ` ( Z ` k ) ) ) e. _V )
88 83 85 86 87 fvmptd3
 |-  ( ( ph /\ k e. I ) -> ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) = ( X .- ( A ` ( Z ` k ) ) ) )
89 88 fveq2d
 |-  ( ( ph /\ k e. I ) -> ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) )
90 18 1 20 deg1xrcl
 |-  ( ( A ` ( Z ` n ) ) e. ( Base ` W ) -> ( D ` ( A ` ( Z ` n ) ) ) e. RR* )
91 43 90 syl
 |-  ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) e. RR* )
92 0xr
 |-  0 e. RR*
93 92 a1i
 |-  ( ( ph /\ n e. I ) -> 0 e. RR* )
94 1xr
 |-  1 e. RR*
95 94 a1i
 |-  ( ( ph /\ n e. I ) -> 1 e. RR* )
96 0lt1
 |-  0 < 1
97 96 a1i
 |-  ( ( ph /\ n e. I ) -> 0 < 1 )
98 91 93 95 67 97 xrlelttrd
 |-  ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) < 1 )
99 48 adantr
 |-  ( ( ph /\ n e. I ) -> ( D ` X ) = 1 )
100 98 99 breqtrrd
 |-  ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) < ( D ` X ) )
101 1 18 65 20 3 29 43 100 deg1sub
 |-  ( ( ph /\ n e. I ) -> ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = ( D ` X ) )
102 101 99 eqtrd
 |-  ( ( ph /\ n e. I ) -> ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 )
103 102 ralrimiva
 |-  ( ph -> A. n e. I ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 )
104 85 fveqeq2d
 |-  ( n = k -> ( ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 <-> ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 ) )
105 104 cbvralvw
 |-  ( A. n e. I ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 <-> A. k e. I ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 )
106 103 105 sylib
 |-  ( ph -> A. k e. I ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 )
107 106 r19.21bi
 |-  ( ( ph /\ k e. I ) -> ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 )
108 89 107 eqtrd
 |-  ( ( ph /\ k e. I ) -> ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = 1 )
109 108 sumeq2dv
 |-  ( ph -> sum_ k e. I ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = sum_ k e. I 1 )
110 1cnd
 |-  ( ph -> 1 e. CC )
111 fsumconst
 |-  ( ( I e. Fin /\ 1 e. CC ) -> sum_ k e. I 1 = ( ( # ` I ) x. 1 ) )
112 14 110 111 syl2anc
 |-  ( ph -> sum_ k e. I 1 = ( ( # ` I ) x. 1 ) )
113 hashcl
 |-  ( I e. Fin -> ( # ` I ) e. NN0 )
114 14 113 syl
 |-  ( ph -> ( # ` I ) e. NN0 )
115 114 nn0cnd
 |-  ( ph -> ( # ` I ) e. CC )
116 115 mulridd
 |-  ( ph -> ( ( # ` I ) x. 1 ) = ( # ` I ) )
117 116 13 eqtr4di
 |-  ( ph -> ( ( # ` I ) x. 1 ) = H )
118 109 112 117 3eqtrd
 |-  ( ph -> sum_ k e. I ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = H )
119 82 118 eqtrd
 |-  ( ph -> ( D ` ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ) = H )
120 19 119 eqtrid
 |-  ( ph -> ( D ` F ) = H )