| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta.w |
|- W = ( Poly1 ` R ) |
| 2 |
|
vieta.b |
|- B = ( Base ` R ) |
| 3 |
|
vieta.3 |
|- .- = ( -g ` W ) |
| 4 |
|
vieta.m |
|- M = ( mulGrp ` W ) |
| 5 |
|
vieta.q |
|- Q = ( I eval R ) |
| 6 |
|
vieta.e |
|- E = ( I eSymPoly R ) |
| 7 |
|
vieta.n |
|- N = ( invg ` R ) |
| 8 |
|
vieta.1 |
|- .1. = ( 1r ` R ) |
| 9 |
|
vieta.t |
|- .x. = ( .r ` R ) |
| 10 |
|
vieta.x |
|- X = ( var1 ` R ) |
| 11 |
|
vieta.a |
|- A = ( algSc ` W ) |
| 12 |
|
vieta.p |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 13 |
|
vieta.h |
|- H = ( # ` I ) |
| 14 |
|
vieta.i |
|- ( ph -> I e. Fin ) |
| 15 |
|
vieta.r |
|- ( ph -> R e. IDomn ) |
| 16 |
|
vieta.z |
|- ( ph -> Z : I --> B ) |
| 17 |
|
vieta.f |
|- F = ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) |
| 18 |
|
vietadeg1.1 |
|- D = ( deg1 ` R ) |
| 19 |
17
|
fveq2i |
|- ( D ` F ) = ( D ` ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ) |
| 20 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 21 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 22 |
15
|
idomringd |
|- ( ph -> R e. Ring ) |
| 23 |
1
|
ply1ring |
|- ( R e. Ring -> W e. Ring ) |
| 24 |
|
ringgrp |
|- ( W e. Ring -> W e. Grp ) |
| 25 |
22 23 24
|
3syl |
|- ( ph -> W e. Grp ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ n e. I ) -> W e. Grp ) |
| 27 |
10 1 20
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` W ) ) |
| 28 |
22 27
|
syl |
|- ( ph -> X e. ( Base ` W ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ n e. I ) -> X e. ( Base ` W ) ) |
| 30 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 31 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 32 |
15
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 33 |
1
|
ply1assa |
|- ( R e. CRing -> W e. AssAlg ) |
| 34 |
32 33
|
syl |
|- ( ph -> W e. AssAlg ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ n e. I ) -> W e. AssAlg ) |
| 36 |
16
|
ffvelcdmda |
|- ( ( ph /\ n e. I ) -> ( Z ` n ) e. B ) |
| 37 |
1
|
ply1sca |
|- ( R e. IDomn -> R = ( Scalar ` W ) ) |
| 38 |
15 37
|
syl |
|- ( ph -> R = ( Scalar ` W ) ) |
| 39 |
38
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` W ) ) ) |
| 40 |
2 39
|
eqtrid |
|- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ n e. I ) -> B = ( Base ` ( Scalar ` W ) ) ) |
| 42 |
36 41
|
eleqtrd |
|- ( ( ph /\ n e. I ) -> ( Z ` n ) e. ( Base ` ( Scalar ` W ) ) ) |
| 43 |
11 30 31 35 42
|
asclelbas |
|- ( ( ph /\ n e. I ) -> ( A ` ( Z ` n ) ) e. ( Base ` W ) ) |
| 44 |
20 3 26 29 43
|
grpsubcld |
|- ( ( ph /\ n e. I ) -> ( X .- ( A ` ( Z ` n ) ) ) e. ( Base ` W ) ) |
| 45 |
15
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 46 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 47 |
45 46
|
syl |
|- ( ph -> R e. NzRing ) |
| 48 |
18 1 10 47
|
deg1vr |
|- ( ph -> ( D ` X ) = 1 ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) = 1 ) |
| 50 |
18 1 20
|
deg1cl |
|- ( X e. ( Base ` W ) -> ( D ` X ) e. ( NN0 u. { -oo } ) ) |
| 51 |
28 50
|
syl |
|- ( ph -> ( D ` X ) e. ( NN0 u. { -oo } ) ) |
| 52 |
51
|
nn0mnfxrd |
|- ( ph -> ( D ` X ) e. RR* ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) e. RR* ) |
| 54 |
49 53
|
eqeltrrd |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> 1 e. RR* ) |
| 55 |
51
|
ad2antrr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) e. ( NN0 u. { -oo } ) ) |
| 56 |
|
0zd |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> 0 e. ZZ ) |
| 57 |
26
|
adantr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> W e. Grp ) |
| 58 |
29
|
adantr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> X e. ( Base ` W ) ) |
| 59 |
43
|
adantr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( A ` ( Z ` n ) ) e. ( Base ` W ) ) |
| 60 |
|
simpr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) |
| 61 |
20 21 3
|
grpsubeq0 |
|- ( ( W e. Grp /\ X e. ( Base ` W ) /\ ( A ` ( Z ` n ) ) e. ( Base ` W ) ) -> ( ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) <-> X = ( A ` ( Z ` n ) ) ) ) |
| 62 |
61
|
biimpa |
|- ( ( ( W e. Grp /\ X e. ( Base ` W ) /\ ( A ` ( Z ` n ) ) e. ( Base ` W ) ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> X = ( A ` ( Z ` n ) ) ) |
| 63 |
57 58 59 60 62
|
syl31anc |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> X = ( A ` ( Z ` n ) ) ) |
| 64 |
63
|
fveq2d |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) = ( D ` ( A ` ( Z ` n ) ) ) ) |
| 65 |
22
|
adantr |
|- ( ( ph /\ n e. I ) -> R e. Ring ) |
| 66 |
18 1 2 11
|
deg1sclle |
|- ( ( R e. Ring /\ ( Z ` n ) e. B ) -> ( D ` ( A ` ( Z ` n ) ) ) <_ 0 ) |
| 67 |
65 36 66
|
syl2anc |
|- ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) <_ 0 ) |
| 68 |
67
|
adantr |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` ( A ` ( Z ` n ) ) ) <_ 0 ) |
| 69 |
64 68
|
eqbrtrd |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) <_ 0 ) |
| 70 |
|
degltp1le |
|- ( ( ( D ` X ) e. ( NN0 u. { -oo } ) /\ 0 e. ZZ ) -> ( ( D ` X ) < ( 0 + 1 ) <-> ( D ` X ) <_ 0 ) ) |
| 71 |
70
|
biimpar |
|- ( ( ( ( D ` X ) e. ( NN0 u. { -oo } ) /\ 0 e. ZZ ) /\ ( D ` X ) <_ 0 ) -> ( D ` X ) < ( 0 + 1 ) ) |
| 72 |
55 56 69 71
|
syl21anc |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) < ( 0 + 1 ) ) |
| 73 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 74 |
72 73
|
breqtrdi |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) < 1 ) |
| 75 |
53 54 74
|
xrgtned |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> 1 =/= ( D ` X ) ) |
| 76 |
75
|
necomd |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> ( D ` X ) =/= 1 ) |
| 77 |
76
|
neneqd |
|- ( ( ( ph /\ n e. I ) /\ ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) -> -. ( D ` X ) = 1 ) |
| 78 |
49 77
|
pm2.65da |
|- ( ( ph /\ n e. I ) -> -. ( X .- ( A ` ( Z ` n ) ) ) = ( 0g ` W ) ) |
| 79 |
78
|
neqned |
|- ( ( ph /\ n e. I ) -> ( X .- ( A ` ( Z ` n ) ) ) =/= ( 0g ` W ) ) |
| 80 |
44 79
|
eldifsnd |
|- ( ( ph /\ n e. I ) -> ( X .- ( A ` ( Z ` n ) ) ) e. ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
| 81 |
80
|
fmpttd |
|- ( ph -> ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) : I --> ( ( Base ` W ) \ { ( 0g ` W ) } ) ) |
| 82 |
18 1 20 4 21 14 15 81
|
deg1prod |
|- ( ph -> ( D ` ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ) = sum_ k e. I ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) ) |
| 83 |
|
eqid |
|- ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) = ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) |
| 84 |
|
2fveq3 |
|- ( n = k -> ( A ` ( Z ` n ) ) = ( A ` ( Z ` k ) ) ) |
| 85 |
84
|
oveq2d |
|- ( n = k -> ( X .- ( A ` ( Z ` n ) ) ) = ( X .- ( A ` ( Z ` k ) ) ) ) |
| 86 |
|
simpr |
|- ( ( ph /\ k e. I ) -> k e. I ) |
| 87 |
|
ovexd |
|- ( ( ph /\ k e. I ) -> ( X .- ( A ` ( Z ` k ) ) ) e. _V ) |
| 88 |
83 85 86 87
|
fvmptd3 |
|- ( ( ph /\ k e. I ) -> ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) = ( X .- ( A ` ( Z ` k ) ) ) ) |
| 89 |
88
|
fveq2d |
|- ( ( ph /\ k e. I ) -> ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) ) |
| 90 |
18 1 20
|
deg1xrcl |
|- ( ( A ` ( Z ` n ) ) e. ( Base ` W ) -> ( D ` ( A ` ( Z ` n ) ) ) e. RR* ) |
| 91 |
43 90
|
syl |
|- ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) e. RR* ) |
| 92 |
|
0xr |
|- 0 e. RR* |
| 93 |
92
|
a1i |
|- ( ( ph /\ n e. I ) -> 0 e. RR* ) |
| 94 |
|
1xr |
|- 1 e. RR* |
| 95 |
94
|
a1i |
|- ( ( ph /\ n e. I ) -> 1 e. RR* ) |
| 96 |
|
0lt1 |
|- 0 < 1 |
| 97 |
96
|
a1i |
|- ( ( ph /\ n e. I ) -> 0 < 1 ) |
| 98 |
91 93 95 67 97
|
xrlelttrd |
|- ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) < 1 ) |
| 99 |
48
|
adantr |
|- ( ( ph /\ n e. I ) -> ( D ` X ) = 1 ) |
| 100 |
98 99
|
breqtrrd |
|- ( ( ph /\ n e. I ) -> ( D ` ( A ` ( Z ` n ) ) ) < ( D ` X ) ) |
| 101 |
1 18 65 20 3 29 43 100
|
deg1sub |
|- ( ( ph /\ n e. I ) -> ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = ( D ` X ) ) |
| 102 |
101 99
|
eqtrd |
|- ( ( ph /\ n e. I ) -> ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 ) |
| 103 |
102
|
ralrimiva |
|- ( ph -> A. n e. I ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 ) |
| 104 |
85
|
fveqeq2d |
|- ( n = k -> ( ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 <-> ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 ) ) |
| 105 |
104
|
cbvralvw |
|- ( A. n e. I ( D ` ( X .- ( A ` ( Z ` n ) ) ) ) = 1 <-> A. k e. I ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 ) |
| 106 |
103 105
|
sylib |
|- ( ph -> A. k e. I ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 ) |
| 107 |
106
|
r19.21bi |
|- ( ( ph /\ k e. I ) -> ( D ` ( X .- ( A ` ( Z ` k ) ) ) ) = 1 ) |
| 108 |
89 107
|
eqtrd |
|- ( ( ph /\ k e. I ) -> ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = 1 ) |
| 109 |
108
|
sumeq2dv |
|- ( ph -> sum_ k e. I ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = sum_ k e. I 1 ) |
| 110 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 111 |
|
fsumconst |
|- ( ( I e. Fin /\ 1 e. CC ) -> sum_ k e. I 1 = ( ( # ` I ) x. 1 ) ) |
| 112 |
14 110 111
|
syl2anc |
|- ( ph -> sum_ k e. I 1 = ( ( # ` I ) x. 1 ) ) |
| 113 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 114 |
14 113
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 115 |
114
|
nn0cnd |
|- ( ph -> ( # ` I ) e. CC ) |
| 116 |
115
|
mulridd |
|- ( ph -> ( ( # ` I ) x. 1 ) = ( # ` I ) ) |
| 117 |
116 13
|
eqtr4di |
|- ( ph -> ( ( # ` I ) x. 1 ) = H ) |
| 118 |
109 112 117
|
3eqtrd |
|- ( ph -> sum_ k e. I ( D ` ( ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ` k ) ) = H ) |
| 119 |
82 118
|
eqtrd |
|- ( ph -> ( D ` ( M gsum ( n e. I |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ) = H ) |
| 120 |
19 119
|
eqtrid |
|- ( ph -> ( D ` F ) = H ) |