| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0mnfxrd.1 |
|- ( ph -> A e. ( NN0 u. { -oo } ) ) |
| 2 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 3 |
2
|
rexrd |
|- ( A e. NN0 -> A e. RR* ) |
| 4 |
3
|
adantl |
|- ( ( ph /\ A e. NN0 ) -> A e. RR* ) |
| 5 |
|
mnfxr |
|- -oo e. RR* |
| 6 |
|
eleq1 |
|- ( A = -oo -> ( A e. RR* <-> -oo e. RR* ) ) |
| 7 |
5 6
|
mpbiri |
|- ( A = -oo -> A e. RR* ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ A = -oo ) -> A e. RR* ) |
| 9 |
|
elunsn |
|- ( A e. ( NN0 u. { -oo } ) -> ( A e. ( NN0 u. { -oo } ) <-> ( A e. NN0 \/ A = -oo ) ) ) |
| 10 |
9
|
ibi |
|- ( A e. ( NN0 u. { -oo } ) -> ( A e. NN0 \/ A = -oo ) ) |
| 11 |
1 10
|
syl |
|- ( ph -> ( A e. NN0 \/ A = -oo ) ) |
| 12 |
4 8 11
|
mpjaodan |
|- ( ph -> A e. RR* ) |