Metamath Proof Explorer


Theorem nn0mnfxrd

Description: Nonnegative integers or minus infinity are extended real numbers. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypothesis nn0mnfxrd.1 φ A 0 −∞
Assertion nn0mnfxrd φ A *

Proof

Step Hyp Ref Expression
1 nn0mnfxrd.1 φ A 0 −∞
2 nn0re A 0 A
3 2 rexrd A 0 A *
4 3 adantl φ A 0 A *
5 mnfxr −∞ *
6 eleq1 A = −∞ A * −∞ *
7 5 6 mpbiri A = −∞ A *
8 7 adantl φ A = −∞ A *
9 elunsn A 0 −∞ A 0 −∞ A 0 A = −∞
10 9 ibi A 0 −∞ A 0 A = −∞
11 1 10 syl φ A 0 A = −∞
12 4 8 11 mpjaodan φ A *