| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0mnfxrd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 2 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 3 |
2
|
rexrd |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ* ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ* ) |
| 5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 6 |
|
eleq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 ∈ ℝ* ↔ -∞ ∈ ℝ* ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝐴 = -∞ → 𝐴 ∈ ℝ* ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* ) |
| 9 |
|
elunsn |
⊢ ( 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) → ( 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = -∞ ) ) ) |
| 10 |
9
|
ibi |
⊢ ( 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) → ( 𝐴 ∈ ℕ0 ∨ 𝐴 = -∞ ) ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℕ0 ∨ 𝐴 = -∞ ) ) |
| 12 |
4 8 11
|
mpjaodan |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |