Metamath Proof Explorer


Theorem nn0mnfxrd

Description: Nonnegative integers or minus infinity are extended real numbers. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypothesis nn0mnfxrd.1 ( 𝜑𝐴 ∈ ( ℕ0 ∪ { -∞ } ) )
Assertion nn0mnfxrd ( 𝜑𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 nn0mnfxrd.1 ( 𝜑𝐴 ∈ ( ℕ0 ∪ { -∞ } ) )
2 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
3 2 rexrd ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ* )
4 3 adantl ( ( 𝜑𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ* )
5 mnfxr -∞ ∈ ℝ*
6 eleq1 ( 𝐴 = -∞ → ( 𝐴 ∈ ℝ* ↔ -∞ ∈ ℝ* ) )
7 5 6 mpbiri ( 𝐴 = -∞ → 𝐴 ∈ ℝ* )
8 7 adantl ( ( 𝜑𝐴 = -∞ ) → 𝐴 ∈ ℝ* )
9 elunsn ( 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) → ( 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) ↔ ( 𝐴 ∈ ℕ0𝐴 = -∞ ) ) )
10 9 ibi ( 𝐴 ∈ ( ℕ0 ∪ { -∞ } ) → ( 𝐴 ∈ ℕ0𝐴 = -∞ ) )
11 1 10 syl ( 𝜑 → ( 𝐴 ∈ ℕ0𝐴 = -∞ ) )
12 4 8 11 mpjaodan ( 𝜑𝐴 ∈ ℝ* )