| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1prod.1 |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1prod.2 |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1prod.3 |
|- B = ( Base ` P ) |
| 4 |
|
deg1prod.4 |
|- M = ( mulGrp ` P ) |
| 5 |
|
deg1prod.5 |
|- .0. = ( 0g ` P ) |
| 6 |
|
deg1prod.6 |
|- ( ph -> A e. Fin ) |
| 7 |
|
deg1prod.7 |
|- ( ph -> R e. IDomn ) |
| 8 |
|
deg1prod.8 |
|- ( ph -> F : A --> ( B \ { .0. } ) ) |
| 9 |
8
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 10 |
9
|
oveq2d |
|- ( ph -> ( M gsum F ) = ( M gsum ( k e. A |-> ( F ` k ) ) ) ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( D ` ( M gsum F ) ) = ( D ` ( M gsum ( k e. A |-> ( F ` k ) ) ) ) ) |
| 12 |
|
mpteq1 |
|- ( a = (/) -> ( k e. a |-> ( F ` k ) ) = ( k e. (/) |-> ( F ` k ) ) ) |
| 13 |
12
|
oveq2d |
|- ( a = (/) -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. (/) |-> ( F ` k ) ) ) ) |
| 14 |
13
|
fveq2d |
|- ( a = (/) -> ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = ( D ` ( M gsum ( k e. (/) |-> ( F ` k ) ) ) ) ) |
| 15 |
|
sumeq1 |
|- ( a = (/) -> sum_ k e. a ( D ` ( F ` k ) ) = sum_ k e. (/) ( D ` ( F ` k ) ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( a = (/) -> ( ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = sum_ k e. a ( D ` ( F ` k ) ) <-> ( D ` ( M gsum ( k e. (/) |-> ( F ` k ) ) ) ) = sum_ k e. (/) ( D ` ( F ` k ) ) ) ) |
| 17 |
|
mpteq1 |
|- ( a = b -> ( k e. a |-> ( F ` k ) ) = ( k e. b |-> ( F ` k ) ) ) |
| 18 |
17
|
oveq2d |
|- ( a = b -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. b |-> ( F ` k ) ) ) ) |
| 19 |
18
|
fveq2d |
|- ( a = b -> ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) ) |
| 20 |
|
sumeq1 |
|- ( a = b -> sum_ k e. a ( D ` ( F ` k ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( a = b -> ( ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = sum_ k e. a ( D ` ( F ` k ) ) <-> ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) ) |
| 22 |
|
mpteq1 |
|- ( a = ( b u. { l } ) -> ( k e. a |-> ( F ` k ) ) = ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) |
| 23 |
22
|
oveq2d |
|- ( a = ( b u. { l } ) -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) |
| 24 |
23
|
fveq2d |
|- ( a = ( b u. { l } ) -> ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) ) |
| 25 |
|
sumeq1 |
|- ( a = ( b u. { l } ) -> sum_ k e. a ( D ` ( F ` k ) ) = sum_ k e. ( b u. { l } ) ( D ` ( F ` k ) ) ) |
| 26 |
24 25
|
eqeq12d |
|- ( a = ( b u. { l } ) -> ( ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = sum_ k e. a ( D ` ( F ` k ) ) <-> ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) = sum_ k e. ( b u. { l } ) ( D ` ( F ` k ) ) ) ) |
| 27 |
|
mpteq1 |
|- ( a = A -> ( k e. a |-> ( F ` k ) ) = ( k e. A |-> ( F ` k ) ) ) |
| 28 |
27
|
oveq2d |
|- ( a = A -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. A |-> ( F ` k ) ) ) ) |
| 29 |
28
|
fveq2d |
|- ( a = A -> ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = ( D ` ( M gsum ( k e. A |-> ( F ` k ) ) ) ) ) |
| 30 |
|
sumeq1 |
|- ( a = A -> sum_ k e. a ( D ` ( F ` k ) ) = sum_ k e. A ( D ` ( F ` k ) ) ) |
| 31 |
29 30
|
eqeq12d |
|- ( a = A -> ( ( D ` ( M gsum ( k e. a |-> ( F ` k ) ) ) ) = sum_ k e. a ( D ` ( F ` k ) ) <-> ( D ` ( M gsum ( k e. A |-> ( F ` k ) ) ) ) = sum_ k e. A ( D ` ( F ` k ) ) ) ) |
| 32 |
|
mpt0 |
|- ( k e. (/) |-> ( F ` k ) ) = (/) |
| 33 |
32
|
oveq2i |
|- ( M gsum ( k e. (/) |-> ( F ` k ) ) ) = ( M gsum (/) ) |
| 34 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 35 |
4 34
|
ringidval |
|- ( 1r ` P ) = ( 0g ` M ) |
| 36 |
35
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` P ) |
| 37 |
33 36
|
eqtri |
|- ( M gsum ( k e. (/) |-> ( F ` k ) ) ) = ( 1r ` P ) |
| 38 |
37
|
a1i |
|- ( ph -> ( M gsum ( k e. (/) |-> ( F ` k ) ) ) = ( 1r ` P ) ) |
| 39 |
38
|
fveq2d |
|- ( ph -> ( D ` ( M gsum ( k e. (/) |-> ( F ` k ) ) ) ) = ( D ` ( 1r ` P ) ) ) |
| 40 |
7
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 41 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 42 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 43 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 44 |
2 42 43 34
|
ply1scl1 |
|- ( R e. Ring -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 45 |
40 41 44
|
3syl |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 46 |
45
|
fveq2d |
|- ( ph -> ( D ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = ( D ` ( 1r ` P ) ) ) |
| 47 |
7
|
idomringd |
|- ( ph -> R e. Ring ) |
| 48 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 49 |
48 43 47
|
ringidcld |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 50 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 51 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 52 |
43 51
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 53 |
40 50 52
|
3syl |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 54 |
1 2 48 42 51
|
deg1scl |
|- ( ( R e. Ring /\ ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( D ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = 0 ) |
| 55 |
47 49 53 54
|
syl3anc |
|- ( ph -> ( D ` ( ( algSc ` P ) ` ( 1r ` R ) ) ) = 0 ) |
| 56 |
39 46 55
|
3eqtr2d |
|- ( ph -> ( D ` ( M gsum ( k e. (/) |-> ( F ` k ) ) ) ) = 0 ) |
| 57 |
|
sum0 |
|- sum_ k e. (/) ( D ` ( F ` k ) ) = 0 |
| 58 |
56 57
|
eqtr4di |
|- ( ph -> ( D ` ( M gsum ( k e. (/) |-> ( F ` k ) ) ) ) = sum_ k e. (/) ( D ` ( F ` k ) ) ) |
| 59 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 60 |
40
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> R e. Domn ) |
| 61 |
4 3
|
mgpbas |
|- B = ( Base ` M ) |
| 62 |
2
|
ply1idom |
|- ( R e. IDomn -> P e. IDomn ) |
| 63 |
7 62
|
syl |
|- ( ph -> P e. IDomn ) |
| 64 |
63
|
idomcringd |
|- ( ph -> P e. CRing ) |
| 65 |
4
|
crngmgp |
|- ( P e. CRing -> M e. CMnd ) |
| 66 |
64 65
|
syl |
|- ( ph -> M e. CMnd ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> M e. CMnd ) |
| 68 |
6
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> A e. Fin ) |
| 69 |
|
simplr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> b C_ A ) |
| 70 |
68 69
|
ssfid |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> b e. Fin ) |
| 71 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> F : A --> ( B \ { .0. } ) ) |
| 72 |
69
|
sselda |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> k e. A ) |
| 73 |
71 72
|
ffvelcdmd |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> ( F ` k ) e. ( B \ { .0. } ) ) |
| 74 |
73
|
eldifad |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> ( F ` k ) e. B ) |
| 75 |
74
|
ralrimiva |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> A. k e. b ( F ` k ) e. B ) |
| 76 |
61 67 70 75
|
gsummptcl |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( M gsum ( k e. b |-> ( F ` k ) ) ) e. B ) |
| 77 |
|
nfv |
|- F/ k ( ph /\ b C_ A ) |
| 78 |
|
eqid |
|- ( k e. b |-> ( F ` k ) ) = ( k e. b |-> ( F ` k ) ) |
| 79 |
5
|
fvexi |
|- .0. e. _V |
| 80 |
79
|
a1i |
|- ( ( ph /\ b C_ A ) -> .0. e. _V ) |
| 81 |
8
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ k e. b ) -> F : A --> ( B \ { .0. } ) ) |
| 82 |
|
simpr |
|- ( ( ph /\ b C_ A ) -> b C_ A ) |
| 83 |
82
|
sselda |
|- ( ( ( ph /\ b C_ A ) /\ k e. b ) -> k e. A ) |
| 84 |
81 83
|
ffvelcdmd |
|- ( ( ( ph /\ b C_ A ) /\ k e. b ) -> ( F ` k ) e. ( B \ { .0. } ) ) |
| 85 |
|
eldifsni |
|- ( ( F ` k ) e. ( B \ { .0. } ) -> ( F ` k ) =/= .0. ) |
| 86 |
84 85
|
syl |
|- ( ( ( ph /\ b C_ A ) /\ k e. b ) -> ( F ` k ) =/= .0. ) |
| 87 |
86
|
necomd |
|- ( ( ( ph /\ b C_ A ) /\ k e. b ) -> .0. =/= ( F ` k ) ) |
| 88 |
77 78 80 87
|
nelrnmpt |
|- ( ( ph /\ b C_ A ) -> -. .0. e. ran ( k e. b |-> ( F ` k ) ) ) |
| 89 |
63
|
adantr |
|- ( ( ph /\ b C_ A ) -> P e. IDomn ) |
| 90 |
6
|
adantr |
|- ( ( ph /\ b C_ A ) -> A e. Fin ) |
| 91 |
90 82
|
ssfid |
|- ( ( ph /\ b C_ A ) -> b e. Fin ) |
| 92 |
84
|
eldifad |
|- ( ( ( ph /\ b C_ A ) /\ k e. b ) -> ( F ` k ) e. B ) |
| 93 |
92
|
fmpttd |
|- ( ( ph /\ b C_ A ) -> ( k e. b |-> ( F ` k ) ) : b --> B ) |
| 94 |
4 3 5 89 91 93
|
domnprodeq0 |
|- ( ( ph /\ b C_ A ) -> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) |
| 95 |
94
|
necon3abid |
|- ( ( ph /\ b C_ A ) -> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) =/= .0. <-> -. .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) |
| 96 |
88 95
|
mpbird |
|- ( ( ph /\ b C_ A ) -> ( M gsum ( k e. b |-> ( F ` k ) ) ) =/= .0. ) |
| 97 |
96
|
adantr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( M gsum ( k e. b |-> ( F ` k ) ) ) =/= .0. ) |
| 98 |
8
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> F : A --> ( B \ { .0. } ) ) |
| 99 |
|
simpr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> l e. ( A \ b ) ) |
| 100 |
99
|
eldifad |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> l e. A ) |
| 101 |
98 100
|
ffvelcdmd |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( F ` l ) e. ( B \ { .0. } ) ) |
| 102 |
101
|
eldifad |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( F ` l ) e. B ) |
| 103 |
|
eldifsni |
|- ( ( F ` l ) e. ( B \ { .0. } ) -> ( F ` l ) =/= .0. ) |
| 104 |
101 103
|
syl |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( F ` l ) =/= .0. ) |
| 105 |
1 2 3 59 5 60 76 97 102 104
|
deg1mul |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( D ` ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` P ) ( F ` l ) ) ) = ( ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) + ( D ` ( F ` l ) ) ) ) |
| 106 |
105
|
adantr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( D ` ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` P ) ( F ` l ) ) ) = ( ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) + ( D ` ( F ` l ) ) ) ) |
| 107 |
|
simpr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) |
| 108 |
107
|
oveq1d |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) + ( D ` ( F ` l ) ) ) = ( sum_ k e. b ( D ` ( F ` k ) ) + ( D ` ( F ` l ) ) ) ) |
| 109 |
106 108
|
eqtr2d |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( sum_ k e. b ( D ` ( F ` k ) ) + ( D ` ( F ` l ) ) ) = ( D ` ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` P ) ( F ` l ) ) ) ) |
| 110 |
|
nfv |
|- F/ k ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) |
| 111 |
|
nfcv |
|- F/_ k D |
| 112 |
|
nfcv |
|- F/_ k M |
| 113 |
|
nfcv |
|- F/_ k gsum |
| 114 |
|
nfmpt1 |
|- F/_ k ( k e. b |-> ( F ` k ) ) |
| 115 |
112 113 114
|
nfov |
|- F/_ k ( M gsum ( k e. b |-> ( F ` k ) ) ) |
| 116 |
111 115
|
nffv |
|- F/_ k ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) |
| 117 |
|
nfcv |
|- F/_ k b |
| 118 |
117
|
nfsum1 |
|- F/_ k sum_ k e. b ( D ` ( F ` k ) ) |
| 119 |
116 118
|
nfeq |
|- F/ k ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) |
| 120 |
110 119
|
nfan |
|- F/ k ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) |
| 121 |
|
nfcv |
|- F/_ k ( D ` ( F ` l ) ) |
| 122 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> A e. Fin ) |
| 123 |
|
simpllr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> b C_ A ) |
| 124 |
122 123
|
ssfid |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> b e. Fin ) |
| 125 |
|
simplr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> l e. ( A \ b ) ) |
| 126 |
125
|
eldifbd |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> -. l e. b ) |
| 127 |
47
|
ad4antr |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> R e. Ring ) |
| 128 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> F : A --> ( B \ { .0. } ) ) |
| 129 |
123
|
sselda |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> k e. A ) |
| 130 |
128 129
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> ( F ` k ) e. ( B \ { .0. } ) ) |
| 131 |
130
|
eldifad |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> ( F ` k ) e. B ) |
| 132 |
130 85
|
syl |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> ( F ` k ) =/= .0. ) |
| 133 |
1 2 5 3
|
deg1nn0cl |
|- ( ( R e. Ring /\ ( F ` k ) e. B /\ ( F ` k ) =/= .0. ) -> ( D ` ( F ` k ) ) e. NN0 ) |
| 134 |
127 131 132 133
|
syl3anc |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> ( D ` ( F ` k ) ) e. NN0 ) |
| 135 |
134
|
nn0cnd |
|- ( ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) /\ k e. b ) -> ( D ` ( F ` k ) ) e. CC ) |
| 136 |
|
2fveq3 |
|- ( k = l -> ( D ` ( F ` k ) ) = ( D ` ( F ` l ) ) ) |
| 137 |
47
|
ad3antrrr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> R e. Ring ) |
| 138 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> F : A --> ( B \ { .0. } ) ) |
| 139 |
125
|
eldifad |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> l e. A ) |
| 140 |
138 139
|
ffvelcdmd |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( F ` l ) e. ( B \ { .0. } ) ) |
| 141 |
140
|
eldifad |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( F ` l ) e. B ) |
| 142 |
140 103
|
syl |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( F ` l ) =/= .0. ) |
| 143 |
1 2 5 3
|
deg1nn0cl |
|- ( ( R e. Ring /\ ( F ` l ) e. B /\ ( F ` l ) =/= .0. ) -> ( D ` ( F ` l ) ) e. NN0 ) |
| 144 |
137 141 142 143
|
syl3anc |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( D ` ( F ` l ) ) e. NN0 ) |
| 145 |
144
|
nn0cnd |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( D ` ( F ` l ) ) e. CC ) |
| 146 |
120 121 124 125 126 135 136 145
|
fsumsplitsn |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> sum_ k e. ( b u. { l } ) ( D ` ( F ` k ) ) = ( sum_ k e. b ( D ` ( F ` k ) ) + ( D ` ( F ` l ) ) ) ) |
| 147 |
4 59
|
mgpplusg |
|- ( .r ` P ) = ( +g ` M ) |
| 148 |
99
|
eldifbd |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> -. l e. b ) |
| 149 |
|
fveq2 |
|- ( k = l -> ( F ` k ) = ( F ` l ) ) |
| 150 |
61 147 67 70 74 99 148 102 149
|
gsumunsn |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` P ) ( F ` l ) ) ) |
| 151 |
150
|
fveq2d |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) = ( D ` ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` P ) ( F ` l ) ) ) ) |
| 152 |
151
|
adantr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) = ( D ` ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` P ) ( F ` l ) ) ) ) |
| 153 |
109 146 152
|
3eqtr4rd |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) ) -> ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) = sum_ k e. ( b u. { l } ) ( D ` ( F ` k ) ) ) |
| 154 |
153
|
ex |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) -> ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) = sum_ k e. ( b u. { l } ) ( D ` ( F ` k ) ) ) ) |
| 155 |
154
|
anasss |
|- ( ( ph /\ ( b C_ A /\ l e. ( A \ b ) ) ) -> ( ( D ` ( M gsum ( k e. b |-> ( F ` k ) ) ) ) = sum_ k e. b ( D ` ( F ` k ) ) -> ( D ` ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) = sum_ k e. ( b u. { l } ) ( D ` ( F ` k ) ) ) ) |
| 156 |
16 21 26 31 58 155 6
|
findcard2d |
|- ( ph -> ( D ` ( M gsum ( k e. A |-> ( F ` k ) ) ) ) = sum_ k e. A ( D ` ( F ` k ) ) ) |
| 157 |
11 156
|
eqtrd |
|- ( ph -> ( D ` ( M gsum F ) ) = sum_ k e. A ( D ` ( F ` k ) ) ) |