| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1prod.1 |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 2 |
|
deg1prod.2 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
deg1prod.3 |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
deg1prod.4 |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
| 5 |
|
deg1prod.5 |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 6 |
|
deg1prod.6 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
deg1prod.7 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 8 |
|
deg1prod.8 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 𝐵 ∖ { 0 } ) ) |
| 9 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg 𝐹 ) ) = ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 12 |
|
mpteq1 |
⊢ ( 𝑎 = ∅ → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 15 |
|
sumeq1 |
⊢ ( 𝑎 = ∅ → Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ∅ ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ∅ ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 17 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 20 |
|
sumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 22 |
|
mpteq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 25 |
|
sumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 26 |
24 25
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 27 |
|
mpteq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 30 |
|
sumeq1 |
⊢ ( 𝑎 = 𝐴 → Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 |
29 30
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑎 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 32 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) = ∅ |
| 33 |
32
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ∅ ) |
| 34 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 35 |
4 34
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝑀 ) |
| 36 |
35
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑃 ) |
| 37 |
33 36
|
eqtri |
⊢ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 1r ‘ 𝑃 ) |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) |
| 40 |
7
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 41 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
| 42 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 43 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 44 |
2 42 43 34
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 45 |
40 41 44
|
3syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐷 ‘ ( 1r ‘ 𝑃 ) ) ) |
| 47 |
7
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 48 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 49 |
48 43 47
|
ringidcld |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 51 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 52 |
43 51
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 53 |
40 50 52
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 54 |
1 2 48 42 51
|
deg1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
| 55 |
47 49 53 54
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = 0 ) |
| 56 |
39 46 55
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = 0 ) |
| 57 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = 0 |
| 58 |
56 57
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ∅ ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 59 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 60 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑅 ∈ Domn ) |
| 61 |
4 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 62 |
2
|
ply1idom |
⊢ ( 𝑅 ∈ IDomn → 𝑃 ∈ IDomn ) |
| 63 |
7 62
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ IDomn ) |
| 64 |
63
|
idomcringd |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 65 |
4
|
crngmgp |
⊢ ( 𝑃 ∈ CRing → 𝑀 ∈ CMnd ) |
| 66 |
64 65
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑀 ∈ CMnd ) |
| 68 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝐴 ∈ Fin ) |
| 69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑏 ⊆ 𝐴 ) |
| 70 |
68 69
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑏 ∈ Fin ) |
| 71 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝐹 : 𝐴 ⟶ ( 𝐵 ∖ { 0 } ) ) |
| 72 |
69
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝑘 ∈ 𝐴 ) |
| 73 |
71 72
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 74 |
73
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 75 |
74
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ∀ 𝑘 ∈ 𝑏 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 76 |
61 67 70 75
|
gsummptcl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ 𝐵 ) |
| 77 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) |
| 78 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 79 |
5
|
fvexi |
⊢ 0 ∈ V |
| 80 |
79
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 0 ∈ V ) |
| 81 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑏 ) → 𝐹 : 𝐴 ⟶ ( 𝐵 ∖ { 0 } ) ) |
| 82 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
| 83 |
82
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑏 ) → 𝑘 ∈ 𝐴 ) |
| 84 |
81 83
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 85 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐵 ∖ { 0 } ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
| 86 |
84 85
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
| 87 |
86
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑏 ) → 0 ≠ ( 𝐹 ‘ 𝑘 ) ) |
| 88 |
77 78 80 87
|
nelrnmpt |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ¬ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 89 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑃 ∈ IDomn ) |
| 90 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 91 |
90 82
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → 𝑏 ∈ Fin ) |
| 92 |
84
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 93 |
92
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑏 ⟶ 𝐵 ) |
| 94 |
4 3 5 89 91 93
|
domnprodeq0 |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 95 |
94
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≠ 0 ↔ ¬ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 96 |
88 95
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≠ 0 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≠ 0 ) |
| 98 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝐹 : 𝐴 ⟶ ( 𝐵 ∖ { 0 } ) ) |
| 99 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) |
| 100 |
99
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑙 ∈ 𝐴 ) |
| 101 |
98 100
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝐹 ‘ 𝑙 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 102 |
101
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝐹 ‘ 𝑙 ) ∈ 𝐵 ) |
| 103 |
|
eldifsni |
⊢ ( ( 𝐹 ‘ 𝑙 ) ∈ ( 𝐵 ∖ { 0 } ) → ( 𝐹 ‘ 𝑙 ) ≠ 0 ) |
| 104 |
101 103
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝐹 ‘ 𝑙 ) ≠ 0 ) |
| 105 |
1 2 3 59 5 60 76 97 102 104
|
deg1mul |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝐷 ‘ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑙 ) ) ) = ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) + ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 106 |
105
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑙 ) ) ) = ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) + ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 107 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 108 |
107
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) + ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) = ( Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) + ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 109 |
106 108
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) + ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) = ( 𝐷 ‘ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 110 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) |
| 111 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐷 |
| 112 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑀 |
| 113 |
|
nfcv |
⊢ Ⅎ 𝑘 Σg |
| 114 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 115 |
112 113 114
|
nfov |
⊢ Ⅎ 𝑘 ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 116 |
111 115
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 117 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑏 |
| 118 |
117
|
nfsum1 |
⊢ Ⅎ 𝑘 Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) |
| 119 |
116 118
|
nfeq |
⊢ Ⅎ 𝑘 ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) |
| 120 |
110 119
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 121 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) |
| 122 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐴 ∈ Fin ) |
| 123 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑏 ⊆ 𝐴 ) |
| 124 |
122 123
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑏 ∈ Fin ) |
| 125 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) |
| 126 |
125
|
eldifbd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ¬ 𝑙 ∈ 𝑏 ) |
| 127 |
47
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝑅 ∈ Ring ) |
| 128 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝐹 : 𝐴 ⟶ ( 𝐵 ∖ { 0 } ) ) |
| 129 |
123
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝑘 ∈ 𝐴 ) |
| 130 |
128 129
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 131 |
130
|
eldifad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 132 |
130 85
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
| 133 |
1 2 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) → ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℕ0 ) |
| 134 |
127 131 132 133
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℕ0 ) |
| 135 |
134
|
nn0cnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 136 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑙 → ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) |
| 137 |
47
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑅 ∈ Ring ) |
| 138 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : 𝐴 ⟶ ( 𝐵 ∖ { 0 } ) ) |
| 139 |
125
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑙 ∈ 𝐴 ) |
| 140 |
138 139
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑙 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 141 |
140
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑙 ) ∈ 𝐵 ) |
| 142 |
140 103
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑙 ) ≠ 0 ) |
| 143 |
1 2 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑙 ) ≠ 0 ) → ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ∈ ℕ0 ) |
| 144 |
137 141 142 143
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ∈ ℕ0 ) |
| 145 |
144
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ∈ ℂ ) |
| 146 |
120 121 124 125 126 135 136 145
|
fsumsplitsn |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → Σ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) + ( 𝐷 ‘ ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 147 |
4 59
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑀 ) |
| 148 |
99
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ¬ 𝑙 ∈ 𝑏 ) |
| 149 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑙 ) ) |
| 150 |
61 147 67 70 74 99 148 102 149
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑙 ) ) ) |
| 151 |
150
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 152 |
151
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( 𝐷 ‘ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑙 ) ) ) ) |
| 153 |
109 146 152
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 154 |
153
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 155 |
154
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝑏 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 156 |
16 21 26 31 58 155 6
|
findcard2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 157 |
11 156
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg 𝐹 ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐷 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |