Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nelrnmpt.x | ⊢ Ⅎ 𝑥 𝜑 | |
| nelrnmpt.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | ||
| nelrnmpt.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| nelrnmpt.n | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 𝐵 ) | ||
| Assertion | nelrnmpt | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelrnmpt.x | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | nelrnmpt.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 3 | nelrnmpt.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | nelrnmpt.n | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 𝐵 ) | |
| 5 | 4 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝐶 = 𝐵 ) |
| 6 | 5 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ¬ 𝐶 = 𝐵 ) ) |
| 7 | 1 6 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵 ) |
| 8 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) |
| 10 | 2 | elrnmpt | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| 12 | 9 11 | mtbird | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ran 𝐹 ) |