| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnprodeq0.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
domnprodeq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
domnprodeq0.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
domnprodeq0.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 5 |
|
domnprodeq0.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 6 |
|
domnprodeq0.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
mpteq1 |
⊢ ( 𝑎 = ∅ → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 8 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝑎 = ∅ → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ∅ ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ∅ ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ∅ ) = 0 ) ) |
| 12 |
9
|
rneqd |
⊢ ( 𝑎 = ∅ → ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ran ∅ ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝑎 = ∅ → ( 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ 0 ∈ ran ∅ ) ) |
| 14 |
11 13
|
bibi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( 𝑀 Σg ∅ ) = 0 ↔ 0 ∈ ran ∅ ) ) ) |
| 15 |
|
mpteq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) ) |
| 18 |
15
|
rneqd |
⊢ ( 𝑎 = 𝑏 → ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 |
18
|
eleq2d |
⊢ ( 𝑎 = 𝑏 → ( 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 20 |
17 19
|
bibi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 21 |
|
mpteq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 23 |
22
|
eqeq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) ) |
| 24 |
21
|
rneqd |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 25 |
24
|
eleq2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 26 |
23 25
|
bibi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 27 |
|
mpteq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) ) |
| 30 |
27
|
rneqd |
⊢ ( 𝑎 = 𝐴 → ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) = ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 |
30
|
eleq2d |
⊢ ( 𝑎 = 𝐴 → ( 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ 0 ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 32 |
29 31
|
bibi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑎 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 33 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 34 |
1 33
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 35 |
34
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑅 ) |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑅 ) ) |
| 37 |
4
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 38 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 39 |
33 3
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 40 |
37 38 39
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 41 |
36 40
|
eqnetrd |
⊢ ( 𝜑 → ( 𝑀 Σg ∅ ) ≠ 0 ) |
| 42 |
41
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑀 Σg ∅ ) = 0 ) |
| 43 |
|
noel |
⊢ ¬ 0 ∈ ∅ |
| 44 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 45 |
44
|
eleq2i |
⊢ ( 0 ∈ ran ∅ ↔ 0 ∈ ∅ ) |
| 46 |
43 45
|
mtbir |
⊢ ¬ 0 ∈ ran ∅ |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ¬ 0 ∈ ran ∅ ) |
| 48 |
42 47
|
2falsed |
⊢ ( 𝜑 → ( ( 𝑀 Σg ∅ ) = 0 ↔ 0 ∈ ran ∅ ) ) |
| 49 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 50 |
49
|
orbi1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ↔ ( 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) ) |
| 51 |
1 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 52 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 53 |
1 52
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 54 |
4
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 55 |
1
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd ) |
| 56 |
54 55
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑀 ∈ CMnd ) |
| 58 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝐴 ∈ Fin ) |
| 59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑏 ⊆ 𝐴 ) |
| 60 |
58 59
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑏 ∈ Fin ) |
| 61 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 62 |
59
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → 𝑘 ∈ 𝐴 ) |
| 63 |
61 62
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ 𝑘 ∈ 𝑏 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) |
| 65 |
64
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ¬ 𝑙 ∈ 𝑏 ) |
| 66 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 67 |
64
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑙 ∈ 𝐴 ) |
| 68 |
66 67
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝐹 ‘ 𝑙 ) ∈ 𝐵 ) |
| 69 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑙 ) ) |
| 70 |
51 53 57 60 63 64 65 68 69
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑙 ) ) ) |
| 71 |
70
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑙 ) ) = 0 ) ) |
| 72 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → 𝑅 ∈ Domn ) |
| 73 |
63
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ∀ 𝑘 ∈ 𝑏 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 74 |
51 57 60 73
|
gsummptcl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ 𝐵 ) |
| 75 |
2 52 3
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑙 ) ∈ 𝐵 ) → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑙 ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) ) |
| 76 |
72 74 68 75
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑙 ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) ) |
| 77 |
71 76
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) ) |
| 78 |
77
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) ) |
| 79 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 80 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
| 81 |
79 80
|
elrnmpti |
⊢ ( 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) 0 = ( 𝐹 ‘ 𝑘 ) ) |
| 82 |
|
rexun |
⊢ ( ∃ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) 0 = ( 𝐹 ‘ 𝑘 ) ↔ ( ∃ 𝑘 ∈ 𝑏 0 = ( 𝐹 ‘ 𝑘 ) ∨ ∃ 𝑘 ∈ { 𝑙 } 0 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 84 |
83 80
|
elrnmpti |
⊢ ( 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ ∃ 𝑘 ∈ 𝑏 0 = ( 𝐹 ‘ 𝑘 ) ) |
| 85 |
84
|
bicomi |
⊢ ( ∃ 𝑘 ∈ 𝑏 0 = ( 𝐹 ‘ 𝑘 ) ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 86 |
|
vex |
⊢ 𝑙 ∈ V |
| 87 |
69
|
eqeq2d |
⊢ ( 𝑘 = 𝑙 → ( 0 = ( 𝐹 ‘ 𝑘 ) ↔ 0 = ( 𝐹 ‘ 𝑙 ) ) ) |
| 88 |
|
eqcom |
⊢ ( 0 = ( 𝐹 ‘ 𝑙 ) ↔ ( 𝐹 ‘ 𝑙 ) = 0 ) |
| 89 |
87 88
|
bitrdi |
⊢ ( 𝑘 = 𝑙 → ( 0 = ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑙 ) = 0 ) ) |
| 90 |
86 89
|
rexsn |
⊢ ( ∃ 𝑘 ∈ { 𝑙 } 0 = ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑙 ) = 0 ) |
| 91 |
85 90
|
orbi12i |
⊢ ( ( ∃ 𝑘 ∈ 𝑏 0 = ( 𝐹 ‘ 𝑘 ) ∨ ∃ 𝑘 ∈ { 𝑙 } 0 = ( 𝐹 ‘ 𝑘 ) ) ↔ ( 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) |
| 92 |
81 82 91
|
3bitri |
⊢ ( 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) |
| 93 |
92
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ∨ ( 𝐹 ‘ 𝑙 ) = 0 ) ) ) |
| 94 |
50 78 93
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 95 |
94
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐴 ) ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 96 |
95
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ( ( 𝑀 Σg ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝑏 ↦ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 97 |
14 20 26 32 48 96 5
|
findcard2d |
⊢ ( 𝜑 → ( ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ↔ 0 ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 98 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 100 |
99
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) = 0 ↔ ( 𝑀 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) ) |
| 101 |
98
|
rneqd |
⊢ ( 𝜑 → ran 𝐹 = ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 102 |
101
|
eleq2d |
⊢ ( 𝜑 → ( 0 ∈ ran 𝐹 ↔ 0 ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 103 |
97 100 102
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) = 0 ↔ 0 ∈ ran 𝐹 ) ) |