Metamath Proof Explorer


Theorem domnprodeq0

Description: A product over a domain is zero exactly when one of the factors is zero. Generalization of domneq0 for any number of factors. See also domnprodn0 . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses domnprodeq0.m 𝑀 = ( mulGrp ‘ 𝑅 )
domnprodeq0.b 𝐵 = ( Base ‘ 𝑅 )
domnprodeq0.1 0 = ( 0g𝑅 )
domnprodeq0.r ( 𝜑𝑅 ∈ IDomn )
domnprodeq0.2 ( 𝜑𝐴 ∈ Fin )
domnprodeq0.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion domnprodeq0 ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) = 00 ∈ ran 𝐹 ) )

Proof

Step Hyp Ref Expression
1 domnprodeq0.m 𝑀 = ( mulGrp ‘ 𝑅 )
2 domnprodeq0.b 𝐵 = ( Base ‘ 𝑅 )
3 domnprodeq0.1 0 = ( 0g𝑅 )
4 domnprodeq0.r ( 𝜑𝑅 ∈ IDomn )
5 domnprodeq0.2 ( 𝜑𝐴 ∈ Fin )
6 domnprodeq0.f ( 𝜑𝐹 : 𝐴𝐵 )
7 mpteq1 ( 𝑎 = ∅ → ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) )
8 mpt0 ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) = ∅
9 7 8 eqtrdi ( 𝑎 = ∅ → ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ∅ )
10 9 oveq2d ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = ( 𝑀 Σg ∅ ) )
11 10 eqeq1d ( 𝑎 = ∅ → ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ∅ ) = 0 ) )
12 9 rneqd ( 𝑎 = ∅ → ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ran ∅ )
13 12 eleq2d ( 𝑎 = ∅ → ( 0 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ↔ 0 ∈ ran ∅ ) )
14 11 13 bibi12d ( 𝑎 = ∅ → ( ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) ↔ ( ( 𝑀 Σg ∅ ) = 00 ∈ ran ∅ ) ) )
15 mpteq1 ( 𝑎 = 𝑏 → ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) )
16 15 oveq2d ( 𝑎 = 𝑏 → ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) )
17 16 eqeq1d ( 𝑎 = 𝑏 → ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 0 ) )
18 15 rneqd ( 𝑎 = 𝑏 → ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) )
19 18 eleq2d ( 𝑎 = 𝑏 → ( 0 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ↔ 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) )
20 17 19 bibi12d ( 𝑎 = 𝑏 → ( ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) ↔ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ) )
21 mpteq1 ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) )
22 21 oveq2d ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) )
23 22 eqeq1d ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 0 ) )
24 21 rneqd ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) )
25 24 eleq2d ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( 0 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ↔ 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) )
26 23 25 bibi12d ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) ↔ ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) ) )
27 mpteq1 ( 𝑎 = 𝐴 → ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
28 27 oveq2d ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = ( 𝑀 Σg ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) )
29 28 eqeq1d ( 𝑎 = 𝐴 → ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( 𝑀 Σg ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) = 0 ) )
30 27 rneqd ( 𝑎 = 𝐴 → ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) = ran ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
31 30 eleq2d ( 𝑎 = 𝐴 → ( 0 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ↔ 0 ∈ ran ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) )
32 29 31 bibi12d ( 𝑎 = 𝐴 → ( ( ( 𝑀 Σg ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑎 ↦ ( 𝐹𝑘 ) ) ) ↔ ( ( 𝑀 Σg ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) ) )
33 eqid ( 1r𝑅 ) = ( 1r𝑅 )
34 1 33 ringidval ( 1r𝑅 ) = ( 0g𝑀 )
35 34 gsum0 ( 𝑀 Σg ∅ ) = ( 1r𝑅 )
36 35 a1i ( 𝜑 → ( 𝑀 Σg ∅ ) = ( 1r𝑅 ) )
37 4 idomdomd ( 𝜑𝑅 ∈ Domn )
38 domnnzr ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing )
39 33 3 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ 0 )
40 37 38 39 3syl ( 𝜑 → ( 1r𝑅 ) ≠ 0 )
41 36 40 eqnetrd ( 𝜑 → ( 𝑀 Σg ∅ ) ≠ 0 )
42 41 neneqd ( 𝜑 → ¬ ( 𝑀 Σg ∅ ) = 0 )
43 noel ¬ 0 ∈ ∅
44 rn0 ran ∅ = ∅
45 44 eleq2i ( 0 ∈ ran ∅ ↔ 0 ∈ ∅ )
46 43 45 mtbir ¬ 0 ∈ ran ∅
47 46 a1i ( 𝜑 → ¬ 0 ∈ ran ∅ )
48 42 47 2falsed ( 𝜑 → ( ( 𝑀 Σg ∅ ) = 00 ∈ ran ∅ ) )
49 simpr ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ) → ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) )
50 49 orbi1d ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ) → ( ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 0 ∨ ( 𝐹𝑙 ) = 0 ) ↔ ( 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ∨ ( 𝐹𝑙 ) = 0 ) ) )
51 1 2 mgpbas 𝐵 = ( Base ‘ 𝑀 )
52 eqid ( .r𝑅 ) = ( .r𝑅 )
53 1 52 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
54 4 idomcringd ( 𝜑𝑅 ∈ CRing )
55 1 crngmgp ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd )
56 54 55 syl ( 𝜑𝑀 ∈ CMnd )
57 56 ad2antrr ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝑀 ∈ CMnd )
58 5 ad2antrr ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝐴 ∈ Fin )
59 simplr ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝑏𝐴 )
60 58 59 ssfid ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝑏 ∈ Fin )
61 6 ad3antrrr ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ 𝑘𝑏 ) → 𝐹 : 𝐴𝐵 )
62 59 sselda ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ 𝑘𝑏 ) → 𝑘𝐴 )
63 61 62 ffvelcdmd ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ 𝑘𝑏 ) → ( 𝐹𝑘 ) ∈ 𝐵 )
64 simpr ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝑙 ∈ ( 𝐴𝑏 ) )
65 64 eldifbd ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ¬ 𝑙𝑏 )
66 6 ad2antrr ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝐹 : 𝐴𝐵 )
67 64 eldifad ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝑙𝐴 )
68 66 67 ffvelcdmd ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( 𝐹𝑙 ) ∈ 𝐵 )
69 fveq2 ( 𝑘 = 𝑙 → ( 𝐹𝑘 ) = ( 𝐹𝑙 ) )
70 51 53 57 60 63 64 65 68 69 gsumunsn ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ( .r𝑅 ) ( 𝐹𝑙 ) ) )
71 70 eqeq1d ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ( .r𝑅 ) ( 𝐹𝑙 ) ) = 0 ) )
72 37 ad2antrr ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → 𝑅 ∈ Domn )
73 63 ralrimiva ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ∀ 𝑘𝑏 ( 𝐹𝑘 ) ∈ 𝐵 )
74 51 57 60 73 gsummptcl ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ∈ 𝐵 )
75 2 52 3 domneq0 ( ( 𝑅 ∈ Domn ∧ ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ∈ 𝐵 ∧ ( 𝐹𝑙 ) ∈ 𝐵 ) → ( ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ( .r𝑅 ) ( 𝐹𝑙 ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 0 ∨ ( 𝐹𝑙 ) = 0 ) ) )
76 72 74 68 75 syl3anc ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ( .r𝑅 ) ( 𝐹𝑙 ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 0 ∨ ( 𝐹𝑙 ) = 0 ) ) )
77 71 76 bitrd ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 0 ∨ ( 𝐹𝑙 ) = 0 ) ) )
78 77 adantr ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 0 ↔ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 0 ∨ ( 𝐹𝑙 ) = 0 ) ) )
79 eqid ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) = ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) )
80 fvex ( 𝐹𝑘 ) ∈ V
81 79 80 elrnmpti ( 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ↔ ∃ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) 0 = ( 𝐹𝑘 ) )
82 rexun ( ∃ 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) 0 = ( 𝐹𝑘 ) ↔ ( ∃ 𝑘𝑏 0 = ( 𝐹𝑘 ) ∨ ∃ 𝑘 ∈ { 𝑙 } 0 = ( 𝐹𝑘 ) ) )
83 eqid ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) = ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) )
84 83 80 elrnmpti ( 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ↔ ∃ 𝑘𝑏 0 = ( 𝐹𝑘 ) )
85 84 bicomi ( ∃ 𝑘𝑏 0 = ( 𝐹𝑘 ) ↔ 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) )
86 vex 𝑙 ∈ V
87 69 eqeq2d ( 𝑘 = 𝑙 → ( 0 = ( 𝐹𝑘 ) ↔ 0 = ( 𝐹𝑙 ) ) )
88 eqcom ( 0 = ( 𝐹𝑙 ) ↔ ( 𝐹𝑙 ) = 0 )
89 87 88 bitrdi ( 𝑘 = 𝑙 → ( 0 = ( 𝐹𝑘 ) ↔ ( 𝐹𝑙 ) = 0 ) )
90 86 89 rexsn ( ∃ 𝑘 ∈ { 𝑙 } 0 = ( 𝐹𝑘 ) ↔ ( 𝐹𝑙 ) = 0 )
91 85 90 orbi12i ( ( ∃ 𝑘𝑏 0 = ( 𝐹𝑘 ) ∨ ∃ 𝑘 ∈ { 𝑙 } 0 = ( 𝐹𝑘 ) ) ↔ ( 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ∨ ( 𝐹𝑙 ) = 0 ) )
92 81 82 91 3bitri ( 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ↔ ( 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ∨ ( 𝐹𝑙 ) = 0 ) )
93 92 a1i ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ) → ( 0 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ↔ ( 0 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ∨ ( 𝐹𝑙 ) = 0 ) ) )
94 50 78 93 3bitr4d ( ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) ∧ ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) )
95 94 ex ( ( ( 𝜑𝑏𝐴 ) ∧ 𝑙 ∈ ( 𝐴𝑏 ) ) → ( ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) ) )
96 95 anasss ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ( ( ( 𝑀 Σg ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝑏 ↦ ( 𝐹𝑘 ) ) ) → ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘 ∈ ( 𝑏 ∪ { 𝑙 } ) ↦ ( 𝐹𝑘 ) ) ) ) )
97 14 20 26 32 48 96 5 findcard2d ( 𝜑 → ( ( 𝑀 Σg ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) = 00 ∈ ran ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) )
98 6 feqmptd ( 𝜑𝐹 = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
99 98 oveq2d ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( 𝑀 Σg ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) )
100 99 eqeq1d ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) = 0 ↔ ( 𝑀 Σg ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) = 0 ) )
101 98 rneqd ( 𝜑 → ran 𝐹 = ran ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
102 101 eleq2d ( 𝜑 → ( 0 ∈ ran 𝐹0 ∈ ran ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ) )
103 97 100 102 3bitr4d ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) = 00 ∈ ran 𝐹 ) )