Metamath Proof Explorer


Theorem domnprodeq0

Description: A product over a domain is zero exactly when one of the factors is zero. Generalization of domneq0 for any number of factors. See also domnprodn0 . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses domnprodeq0.m M = mulGrp R
domnprodeq0.b B = Base R
domnprodeq0.1 0 ˙ = 0 R
domnprodeq0.r φ R IDomn
domnprodeq0.2 φ A Fin
domnprodeq0.f φ F : A B
Assertion domnprodeq0 φ M F = 0 ˙ 0 ˙ ran F

Proof

Step Hyp Ref Expression
1 domnprodeq0.m M = mulGrp R
2 domnprodeq0.b B = Base R
3 domnprodeq0.1 0 ˙ = 0 R
4 domnprodeq0.r φ R IDomn
5 domnprodeq0.2 φ A Fin
6 domnprodeq0.f φ F : A B
7 mpteq1 a = k a F k = k F k
8 mpt0 k F k =
9 7 8 eqtrdi a = k a F k =
10 9 oveq2d a = M k a F k = M
11 10 eqeq1d a = M k a F k = 0 ˙ M = 0 ˙
12 9 rneqd a = ran k a F k = ran
13 12 eleq2d a = 0 ˙ ran k a F k 0 ˙ ran
14 11 13 bibi12d a = M k a F k = 0 ˙ 0 ˙ ran k a F k M = 0 ˙ 0 ˙ ran
15 mpteq1 a = b k a F k = k b F k
16 15 oveq2d a = b M k a F k = M k b F k
17 16 eqeq1d a = b M k a F k = 0 ˙ M k b F k = 0 ˙
18 15 rneqd a = b ran k a F k = ran k b F k
19 18 eleq2d a = b 0 ˙ ran k a F k 0 ˙ ran k b F k
20 17 19 bibi12d a = b M k a F k = 0 ˙ 0 ˙ ran k a F k M k b F k = 0 ˙ 0 ˙ ran k b F k
21 mpteq1 a = b l k a F k = k b l F k
22 21 oveq2d a = b l M k a F k = M k b l F k
23 22 eqeq1d a = b l M k a F k = 0 ˙ M k b l F k = 0 ˙
24 21 rneqd a = b l ran k a F k = ran k b l F k
25 24 eleq2d a = b l 0 ˙ ran k a F k 0 ˙ ran k b l F k
26 23 25 bibi12d a = b l M k a F k = 0 ˙ 0 ˙ ran k a F k M k b l F k = 0 ˙ 0 ˙ ran k b l F k
27 mpteq1 a = A k a F k = k A F k
28 27 oveq2d a = A M k a F k = M k A F k
29 28 eqeq1d a = A M k a F k = 0 ˙ M k A F k = 0 ˙
30 27 rneqd a = A ran k a F k = ran k A F k
31 30 eleq2d a = A 0 ˙ ran k a F k 0 ˙ ran k A F k
32 29 31 bibi12d a = A M k a F k = 0 ˙ 0 ˙ ran k a F k M k A F k = 0 ˙ 0 ˙ ran k A F k
33 eqid 1 R = 1 R
34 1 33 ringidval 1 R = 0 M
35 34 gsum0 M = 1 R
36 35 a1i φ M = 1 R
37 4 idomdomd φ R Domn
38 domnnzr R Domn R NzRing
39 33 3 nzrnz R NzRing 1 R 0 ˙
40 37 38 39 3syl φ 1 R 0 ˙
41 36 40 eqnetrd φ M 0 ˙
42 41 neneqd φ ¬ M = 0 ˙
43 noel ¬ 0 ˙
44 rn0 ran =
45 44 eleq2i 0 ˙ ran 0 ˙
46 43 45 mtbir ¬ 0 ˙ ran
47 46 a1i φ ¬ 0 ˙ ran
48 42 47 2falsed φ M = 0 ˙ 0 ˙ ran
49 simpr φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k M k b F k = 0 ˙ 0 ˙ ran k b F k
50 49 orbi1d φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k M k b F k = 0 ˙ F l = 0 ˙ 0 ˙ ran k b F k F l = 0 ˙
51 1 2 mgpbas B = Base M
52 eqid R = R
53 1 52 mgpplusg R = + M
54 4 idomcringd φ R CRing
55 1 crngmgp R CRing M CMnd
56 54 55 syl φ M CMnd
57 56 ad2antrr φ b A l A b M CMnd
58 5 ad2antrr φ b A l A b A Fin
59 simplr φ b A l A b b A
60 58 59 ssfid φ b A l A b b Fin
61 6 ad3antrrr φ b A l A b k b F : A B
62 59 sselda φ b A l A b k b k A
63 61 62 ffvelcdmd φ b A l A b k b F k B
64 simpr φ b A l A b l A b
65 64 eldifbd φ b A l A b ¬ l b
66 6 ad2antrr φ b A l A b F : A B
67 64 eldifad φ b A l A b l A
68 66 67 ffvelcdmd φ b A l A b F l B
69 fveq2 k = l F k = F l
70 51 53 57 60 63 64 65 68 69 gsumunsn φ b A l A b M k b l F k = M k b F k R F l
71 70 eqeq1d φ b A l A b M k b l F k = 0 ˙ M k b F k R F l = 0 ˙
72 37 ad2antrr φ b A l A b R Domn
73 63 ralrimiva φ b A l A b k b F k B
74 51 57 60 73 gsummptcl φ b A l A b M k b F k B
75 2 52 3 domneq0 R Domn M k b F k B F l B M k b F k R F l = 0 ˙ M k b F k = 0 ˙ F l = 0 ˙
76 72 74 68 75 syl3anc φ b A l A b M k b F k R F l = 0 ˙ M k b F k = 0 ˙ F l = 0 ˙
77 71 76 bitrd φ b A l A b M k b l F k = 0 ˙ M k b F k = 0 ˙ F l = 0 ˙
78 77 adantr φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k M k b l F k = 0 ˙ M k b F k = 0 ˙ F l = 0 ˙
79 eqid k b l F k = k b l F k
80 fvex F k V
81 79 80 elrnmpti 0 ˙ ran k b l F k k b l 0 ˙ = F k
82 rexun k b l 0 ˙ = F k k b 0 ˙ = F k k l 0 ˙ = F k
83 eqid k b F k = k b F k
84 83 80 elrnmpti 0 ˙ ran k b F k k b 0 ˙ = F k
85 84 bicomi k b 0 ˙ = F k 0 ˙ ran k b F k
86 vex l V
87 69 eqeq2d k = l 0 ˙ = F k 0 ˙ = F l
88 eqcom 0 ˙ = F l F l = 0 ˙
89 87 88 bitrdi k = l 0 ˙ = F k F l = 0 ˙
90 86 89 rexsn k l 0 ˙ = F k F l = 0 ˙
91 85 90 orbi12i k b 0 ˙ = F k k l 0 ˙ = F k 0 ˙ ran k b F k F l = 0 ˙
92 81 82 91 3bitri 0 ˙ ran k b l F k 0 ˙ ran k b F k F l = 0 ˙
93 92 a1i φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k 0 ˙ ran k b l F k 0 ˙ ran k b F k F l = 0 ˙
94 50 78 93 3bitr4d φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k M k b l F k = 0 ˙ 0 ˙ ran k b l F k
95 94 ex φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k M k b l F k = 0 ˙ 0 ˙ ran k b l F k
96 95 anasss φ b A l A b M k b F k = 0 ˙ 0 ˙ ran k b F k M k b l F k = 0 ˙ 0 ˙ ran k b l F k
97 14 20 26 32 48 96 5 findcard2d φ M k A F k = 0 ˙ 0 ˙ ran k A F k
98 6 feqmptd φ F = k A F k
99 98 oveq2d φ M F = M k A F k
100 99 eqeq1d φ M F = 0 ˙ M k A F k = 0 ˙
101 98 rneqd φ ran F = ran k A F k
102 101 eleq2d φ 0 ˙ ran F 0 ˙ ran k A F k
103 97 100 102 3bitr4d φ M F = 0 ˙ 0 ˙ ran F