| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnprodeq0.m |
|- M = ( mulGrp ` R ) |
| 2 |
|
domnprodeq0.b |
|- B = ( Base ` R ) |
| 3 |
|
domnprodeq0.1 |
|- .0. = ( 0g ` R ) |
| 4 |
|
domnprodeq0.r |
|- ( ph -> R e. IDomn ) |
| 5 |
|
domnprodeq0.2 |
|- ( ph -> A e. Fin ) |
| 6 |
|
domnprodeq0.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
mpteq1 |
|- ( a = (/) -> ( k e. a |-> ( F ` k ) ) = ( k e. (/) |-> ( F ` k ) ) ) |
| 8 |
|
mpt0 |
|- ( k e. (/) |-> ( F ` k ) ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( a = (/) -> ( k e. a |-> ( F ` k ) ) = (/) ) |
| 10 |
9
|
oveq2d |
|- ( a = (/) -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum (/) ) ) |
| 11 |
10
|
eqeq1d |
|- ( a = (/) -> ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> ( M gsum (/) ) = .0. ) ) |
| 12 |
9
|
rneqd |
|- ( a = (/) -> ran ( k e. a |-> ( F ` k ) ) = ran (/) ) |
| 13 |
12
|
eleq2d |
|- ( a = (/) -> ( .0. e. ran ( k e. a |-> ( F ` k ) ) <-> .0. e. ran (/) ) ) |
| 14 |
11 13
|
bibi12d |
|- ( a = (/) -> ( ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. a |-> ( F ` k ) ) ) <-> ( ( M gsum (/) ) = .0. <-> .0. e. ran (/) ) ) ) |
| 15 |
|
mpteq1 |
|- ( a = b -> ( k e. a |-> ( F ` k ) ) = ( k e. b |-> ( F ` k ) ) ) |
| 16 |
15
|
oveq2d |
|- ( a = b -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. b |-> ( F ` k ) ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( a = b -> ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. ) ) |
| 18 |
15
|
rneqd |
|- ( a = b -> ran ( k e. a |-> ( F ` k ) ) = ran ( k e. b |-> ( F ` k ) ) ) |
| 19 |
18
|
eleq2d |
|- ( a = b -> ( .0. e. ran ( k e. a |-> ( F ` k ) ) <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) |
| 20 |
17 19
|
bibi12d |
|- ( a = b -> ( ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. a |-> ( F ` k ) ) ) <-> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) ) |
| 21 |
|
mpteq1 |
|- ( a = ( b u. { l } ) -> ( k e. a |-> ( F ` k ) ) = ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) |
| 22 |
21
|
oveq2d |
|- ( a = ( b u. { l } ) -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) |
| 23 |
22
|
eqeq1d |
|- ( a = ( b u. { l } ) -> ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. ) ) |
| 24 |
21
|
rneqd |
|- ( a = ( b u. { l } ) -> ran ( k e. a |-> ( F ` k ) ) = ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) |
| 25 |
24
|
eleq2d |
|- ( a = ( b u. { l } ) -> ( .0. e. ran ( k e. a |-> ( F ` k ) ) <-> .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) |
| 26 |
23 25
|
bibi12d |
|- ( a = ( b u. { l } ) -> ( ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. a |-> ( F ` k ) ) ) <-> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) ) |
| 27 |
|
mpteq1 |
|- ( a = A -> ( k e. a |-> ( F ` k ) ) = ( k e. A |-> ( F ` k ) ) ) |
| 28 |
27
|
oveq2d |
|- ( a = A -> ( M gsum ( k e. a |-> ( F ` k ) ) ) = ( M gsum ( k e. A |-> ( F ` k ) ) ) ) |
| 29 |
28
|
eqeq1d |
|- ( a = A -> ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> ( M gsum ( k e. A |-> ( F ` k ) ) ) = .0. ) ) |
| 30 |
27
|
rneqd |
|- ( a = A -> ran ( k e. a |-> ( F ` k ) ) = ran ( k e. A |-> ( F ` k ) ) ) |
| 31 |
30
|
eleq2d |
|- ( a = A -> ( .0. e. ran ( k e. a |-> ( F ` k ) ) <-> .0. e. ran ( k e. A |-> ( F ` k ) ) ) ) |
| 32 |
29 31
|
bibi12d |
|- ( a = A -> ( ( ( M gsum ( k e. a |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. a |-> ( F ` k ) ) ) <-> ( ( M gsum ( k e. A |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. A |-> ( F ` k ) ) ) ) ) |
| 33 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 34 |
1 33
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
| 35 |
34
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` R ) |
| 36 |
35
|
a1i |
|- ( ph -> ( M gsum (/) ) = ( 1r ` R ) ) |
| 37 |
4
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 38 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 39 |
33 3
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
| 40 |
37 38 39
|
3syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
| 41 |
36 40
|
eqnetrd |
|- ( ph -> ( M gsum (/) ) =/= .0. ) |
| 42 |
41
|
neneqd |
|- ( ph -> -. ( M gsum (/) ) = .0. ) |
| 43 |
|
noel |
|- -. .0. e. (/) |
| 44 |
|
rn0 |
|- ran (/) = (/) |
| 45 |
44
|
eleq2i |
|- ( .0. e. ran (/) <-> .0. e. (/) ) |
| 46 |
43 45
|
mtbir |
|- -. .0. e. ran (/) |
| 47 |
46
|
a1i |
|- ( ph -> -. .0. e. ran (/) ) |
| 48 |
42 47
|
2falsed |
|- ( ph -> ( ( M gsum (/) ) = .0. <-> .0. e. ran (/) ) ) |
| 49 |
|
simpr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) -> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) |
| 50 |
49
|
orbi1d |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) -> ( ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. \/ ( F ` l ) = .0. ) <-> ( .0. e. ran ( k e. b |-> ( F ` k ) ) \/ ( F ` l ) = .0. ) ) ) |
| 51 |
1 2
|
mgpbas |
|- B = ( Base ` M ) |
| 52 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 53 |
1 52
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
| 54 |
4
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 55 |
1
|
crngmgp |
|- ( R e. CRing -> M e. CMnd ) |
| 56 |
54 55
|
syl |
|- ( ph -> M e. CMnd ) |
| 57 |
56
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> M e. CMnd ) |
| 58 |
5
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> A e. Fin ) |
| 59 |
|
simplr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> b C_ A ) |
| 60 |
58 59
|
ssfid |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> b e. Fin ) |
| 61 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> F : A --> B ) |
| 62 |
59
|
sselda |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> k e. A ) |
| 63 |
61 62
|
ffvelcdmd |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ k e. b ) -> ( F ` k ) e. B ) |
| 64 |
|
simpr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> l e. ( A \ b ) ) |
| 65 |
64
|
eldifbd |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> -. l e. b ) |
| 66 |
6
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> F : A --> B ) |
| 67 |
64
|
eldifad |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> l e. A ) |
| 68 |
66 67
|
ffvelcdmd |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( F ` l ) e. B ) |
| 69 |
|
fveq2 |
|- ( k = l -> ( F ` k ) = ( F ` l ) ) |
| 70 |
51 53 57 60 63 64 65 68 69
|
gsumunsn |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` R ) ( F ` l ) ) ) |
| 71 |
70
|
eqeq1d |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` R ) ( F ` l ) ) = .0. ) ) |
| 72 |
37
|
ad2antrr |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> R e. Domn ) |
| 73 |
63
|
ralrimiva |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> A. k e. b ( F ` k ) e. B ) |
| 74 |
51 57 60 73
|
gsummptcl |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( M gsum ( k e. b |-> ( F ` k ) ) ) e. B ) |
| 75 |
2 52 3
|
domneq0 |
|- ( ( R e. Domn /\ ( M gsum ( k e. b |-> ( F ` k ) ) ) e. B /\ ( F ` l ) e. B ) -> ( ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` R ) ( F ` l ) ) = .0. <-> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. \/ ( F ` l ) = .0. ) ) ) |
| 76 |
72 74 68 75
|
syl3anc |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( ( ( M gsum ( k e. b |-> ( F ` k ) ) ) ( .r ` R ) ( F ` l ) ) = .0. <-> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. \/ ( F ` l ) = .0. ) ) ) |
| 77 |
71 76
|
bitrd |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. \/ ( F ` l ) = .0. ) ) ) |
| 78 |
77
|
adantr |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) -> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. \/ ( F ` l ) = .0. ) ) ) |
| 79 |
|
eqid |
|- ( k e. ( b u. { l } ) |-> ( F ` k ) ) = ( k e. ( b u. { l } ) |-> ( F ` k ) ) |
| 80 |
|
fvex |
|- ( F ` k ) e. _V |
| 81 |
79 80
|
elrnmpti |
|- ( .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) <-> E. k e. ( b u. { l } ) .0. = ( F ` k ) ) |
| 82 |
|
rexun |
|- ( E. k e. ( b u. { l } ) .0. = ( F ` k ) <-> ( E. k e. b .0. = ( F ` k ) \/ E. k e. { l } .0. = ( F ` k ) ) ) |
| 83 |
|
eqid |
|- ( k e. b |-> ( F ` k ) ) = ( k e. b |-> ( F ` k ) ) |
| 84 |
83 80
|
elrnmpti |
|- ( .0. e. ran ( k e. b |-> ( F ` k ) ) <-> E. k e. b .0. = ( F ` k ) ) |
| 85 |
84
|
bicomi |
|- ( E. k e. b .0. = ( F ` k ) <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) |
| 86 |
|
vex |
|- l e. _V |
| 87 |
69
|
eqeq2d |
|- ( k = l -> ( .0. = ( F ` k ) <-> .0. = ( F ` l ) ) ) |
| 88 |
|
eqcom |
|- ( .0. = ( F ` l ) <-> ( F ` l ) = .0. ) |
| 89 |
87 88
|
bitrdi |
|- ( k = l -> ( .0. = ( F ` k ) <-> ( F ` l ) = .0. ) ) |
| 90 |
86 89
|
rexsn |
|- ( E. k e. { l } .0. = ( F ` k ) <-> ( F ` l ) = .0. ) |
| 91 |
85 90
|
orbi12i |
|- ( ( E. k e. b .0. = ( F ` k ) \/ E. k e. { l } .0. = ( F ` k ) ) <-> ( .0. e. ran ( k e. b |-> ( F ` k ) ) \/ ( F ` l ) = .0. ) ) |
| 92 |
81 82 91
|
3bitri |
|- ( .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) <-> ( .0. e. ran ( k e. b |-> ( F ` k ) ) \/ ( F ` l ) = .0. ) ) |
| 93 |
92
|
a1i |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) -> ( .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) <-> ( .0. e. ran ( k e. b |-> ( F ` k ) ) \/ ( F ` l ) = .0. ) ) ) |
| 94 |
50 78 93
|
3bitr4d |
|- ( ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) /\ ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) ) -> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) |
| 95 |
94
|
ex |
|- ( ( ( ph /\ b C_ A ) /\ l e. ( A \ b ) ) -> ( ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) -> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) ) |
| 96 |
95
|
anasss |
|- ( ( ph /\ ( b C_ A /\ l e. ( A \ b ) ) ) -> ( ( ( M gsum ( k e. b |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. b |-> ( F ` k ) ) ) -> ( ( M gsum ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. ( b u. { l } ) |-> ( F ` k ) ) ) ) ) |
| 97 |
14 20 26 32 48 96 5
|
findcard2d |
|- ( ph -> ( ( M gsum ( k e. A |-> ( F ` k ) ) ) = .0. <-> .0. e. ran ( k e. A |-> ( F ` k ) ) ) ) |
| 98 |
6
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 99 |
98
|
oveq2d |
|- ( ph -> ( M gsum F ) = ( M gsum ( k e. A |-> ( F ` k ) ) ) ) |
| 100 |
99
|
eqeq1d |
|- ( ph -> ( ( M gsum F ) = .0. <-> ( M gsum ( k e. A |-> ( F ` k ) ) ) = .0. ) ) |
| 101 |
98
|
rneqd |
|- ( ph -> ran F = ran ( k e. A |-> ( F ` k ) ) ) |
| 102 |
101
|
eleq2d |
|- ( ph -> ( .0. e. ran F <-> .0. e. ran ( k e. A |-> ( F ` k ) ) ) ) |
| 103 |
97 100 102
|
3bitr4d |
|- ( ph -> ( ( M gsum F ) = .0. <-> .0. e. ran F ) ) |