Metamath Proof Explorer


Theorem deg1prod

Description: Degree of a product of polynomials. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses deg1prod.1 D = deg 1 R
deg1prod.2 P = Poly 1 R
deg1prod.3 B = Base P
deg1prod.4 M = mulGrp P
deg1prod.5 0 ˙ = 0 P
deg1prod.6 φ A Fin
deg1prod.7 φ R IDomn
deg1prod.8 φ F : A B 0 ˙
Assertion deg1prod φ D M F = k A D F k

Proof

Step Hyp Ref Expression
1 deg1prod.1 D = deg 1 R
2 deg1prod.2 P = Poly 1 R
3 deg1prod.3 B = Base P
4 deg1prod.4 M = mulGrp P
5 deg1prod.5 0 ˙ = 0 P
6 deg1prod.6 φ A Fin
7 deg1prod.7 φ R IDomn
8 deg1prod.8 φ F : A B 0 ˙
9 8 feqmptd φ F = k A F k
10 9 oveq2d φ M F = M k A F k
11 10 fveq2d φ D M F = D M k A F k
12 mpteq1 a = k a F k = k F k
13 12 oveq2d a = M k a F k = M k F k
14 13 fveq2d a = D M k a F k = D M k F k
15 sumeq1 a = k a D F k = k D F k
16 14 15 eqeq12d a = D M k a F k = k a D F k D M k F k = k D F k
17 mpteq1 a = b k a F k = k b F k
18 17 oveq2d a = b M k a F k = M k b F k
19 18 fveq2d a = b D M k a F k = D M k b F k
20 sumeq1 a = b k a D F k = k b D F k
21 19 20 eqeq12d a = b D M k a F k = k a D F k D M k b F k = k b D F k
22 mpteq1 a = b l k a F k = k b l F k
23 22 oveq2d a = b l M k a F k = M k b l F k
24 23 fveq2d a = b l D M k a F k = D M k b l F k
25 sumeq1 a = b l k a D F k = k b l D F k
26 24 25 eqeq12d a = b l D M k a F k = k a D F k D M k b l F k = k b l D F k
27 mpteq1 a = A k a F k = k A F k
28 27 oveq2d a = A M k a F k = M k A F k
29 28 fveq2d a = A D M k a F k = D M k A F k
30 sumeq1 a = A k a D F k = k A D F k
31 29 30 eqeq12d a = A D M k a F k = k a D F k D M k A F k = k A D F k
32 mpt0 k F k =
33 32 oveq2i M k F k = M
34 eqid 1 P = 1 P
35 4 34 ringidval 1 P = 0 M
36 35 gsum0 M = 1 P
37 33 36 eqtri M k F k = 1 P
38 37 a1i φ M k F k = 1 P
39 38 fveq2d φ D M k F k = D 1 P
40 7 idomdomd φ R Domn
41 domnring R Domn R Ring
42 eqid algSc P = algSc P
43 eqid 1 R = 1 R
44 2 42 43 34 ply1scl1 R Ring algSc P 1 R = 1 P
45 40 41 44 3syl φ algSc P 1 R = 1 P
46 45 fveq2d φ D algSc P 1 R = D 1 P
47 7 idomringd φ R Ring
48 eqid Base R = Base R
49 48 43 47 ringidcld φ 1 R Base R
50 domnnzr R Domn R NzRing
51 eqid 0 R = 0 R
52 43 51 nzrnz R NzRing 1 R 0 R
53 40 50 52 3syl φ 1 R 0 R
54 1 2 48 42 51 deg1scl R Ring 1 R Base R 1 R 0 R D algSc P 1 R = 0
55 47 49 53 54 syl3anc φ D algSc P 1 R = 0
56 39 46 55 3eqtr2d φ D M k F k = 0
57 sum0 k D F k = 0
58 56 57 eqtr4di φ D M k F k = k D F k
59 eqid P = P
60 40 ad2antrr φ b A l A b R Domn
61 4 3 mgpbas B = Base M
62 2 ply1idom R IDomn P IDomn
63 7 62 syl φ P IDomn
64 63 idomcringd φ P CRing
65 4 crngmgp P CRing M CMnd
66 64 65 syl φ M CMnd
67 66 ad2antrr φ b A l A b M CMnd
68 6 ad2antrr φ b A l A b A Fin
69 simplr φ b A l A b b A
70 68 69 ssfid φ b A l A b b Fin
71 8 ad3antrrr φ b A l A b k b F : A B 0 ˙
72 69 sselda φ b A l A b k b k A
73 71 72 ffvelcdmd φ b A l A b k b F k B 0 ˙
74 73 eldifad φ b A l A b k b F k B
75 74 ralrimiva φ b A l A b k b F k B
76 61 67 70 75 gsummptcl φ b A l A b M k b F k B
77 nfv k φ b A
78 eqid k b F k = k b F k
79 5 fvexi 0 ˙ V
80 79 a1i φ b A 0 ˙ V
81 8 ad2antrr φ b A k b F : A B 0 ˙
82 simpr φ b A b A
83 82 sselda φ b A k b k A
84 81 83 ffvelcdmd φ b A k b F k B 0 ˙
85 eldifsni F k B 0 ˙ F k 0 ˙
86 84 85 syl φ b A k b F k 0 ˙
87 86 necomd φ b A k b 0 ˙ F k
88 77 78 80 87 nelrnmpt φ b A ¬ 0 ˙ ran k b F k
89 63 adantr φ b A P IDomn
90 6 adantr φ b A A Fin
91 90 82 ssfid φ b A b Fin
92 84 eldifad φ b A k b F k B
93 92 fmpttd φ b A k b F k : b B
94 4 3 5 89 91 93 domnprodeq0 φ b A M k b F k = 0 ˙ 0 ˙ ran k b F k
95 94 necon3abid φ b A M k b F k 0 ˙ ¬ 0 ˙ ran k b F k
96 88 95 mpbird φ b A M k b F k 0 ˙
97 96 adantr φ b A l A b M k b F k 0 ˙
98 8 ad2antrr φ b A l A b F : A B 0 ˙
99 simpr φ b A l A b l A b
100 99 eldifad φ b A l A b l A
101 98 100 ffvelcdmd φ b A l A b F l B 0 ˙
102 101 eldifad φ b A l A b F l B
103 eldifsni F l B 0 ˙ F l 0 ˙
104 101 103 syl φ b A l A b F l 0 ˙
105 1 2 3 59 5 60 76 97 102 104 deg1mul φ b A l A b D M k b F k P F l = D M k b F k + D F l
106 105 adantr φ b A l A b D M k b F k = k b D F k D M k b F k P F l = D M k b F k + D F l
107 simpr φ b A l A b D M k b F k = k b D F k D M k b F k = k b D F k
108 107 oveq1d φ b A l A b D M k b F k = k b D F k D M k b F k + D F l = k b D F k + D F l
109 106 108 eqtr2d φ b A l A b D M k b F k = k b D F k k b D F k + D F l = D M k b F k P F l
110 nfv k φ b A l A b
111 nfcv _ k D
112 nfcv _ k M
113 nfcv _ k Σ𝑔
114 nfmpt1 _ k k b F k
115 112 113 114 nfov _ k M k b F k
116 111 115 nffv _ k D M k b F k
117 nfcv _ k b
118 117 nfsum1 _ k k b D F k
119 116 118 nfeq k D M k b F k = k b D F k
120 110 119 nfan k φ b A l A b D M k b F k = k b D F k
121 nfcv _ k D F l
122 6 ad3antrrr φ b A l A b D M k b F k = k b D F k A Fin
123 simpllr φ b A l A b D M k b F k = k b D F k b A
124 122 123 ssfid φ b A l A b D M k b F k = k b D F k b Fin
125 simplr φ b A l A b D M k b F k = k b D F k l A b
126 125 eldifbd φ b A l A b D M k b F k = k b D F k ¬ l b
127 47 ad4antr φ b A l A b D M k b F k = k b D F k k b R Ring
128 8 ad4antr φ b A l A b D M k b F k = k b D F k k b F : A B 0 ˙
129 123 sselda φ b A l A b D M k b F k = k b D F k k b k A
130 128 129 ffvelcdmd φ b A l A b D M k b F k = k b D F k k b F k B 0 ˙
131 130 eldifad φ b A l A b D M k b F k = k b D F k k b F k B
132 130 85 syl φ b A l A b D M k b F k = k b D F k k b F k 0 ˙
133 1 2 5 3 deg1nn0cl R Ring F k B F k 0 ˙ D F k 0
134 127 131 132 133 syl3anc φ b A l A b D M k b F k = k b D F k k b D F k 0
135 134 nn0cnd φ b A l A b D M k b F k = k b D F k k b D F k
136 2fveq3 k = l D F k = D F l
137 47 ad3antrrr φ b A l A b D M k b F k = k b D F k R Ring
138 8 ad3antrrr φ b A l A b D M k b F k = k b D F k F : A B 0 ˙
139 125 eldifad φ b A l A b D M k b F k = k b D F k l A
140 138 139 ffvelcdmd φ b A l A b D M k b F k = k b D F k F l B 0 ˙
141 140 eldifad φ b A l A b D M k b F k = k b D F k F l B
142 140 103 syl φ b A l A b D M k b F k = k b D F k F l 0 ˙
143 1 2 5 3 deg1nn0cl R Ring F l B F l 0 ˙ D F l 0
144 137 141 142 143 syl3anc φ b A l A b D M k b F k = k b D F k D F l 0
145 144 nn0cnd φ b A l A b D M k b F k = k b D F k D F l
146 120 121 124 125 126 135 136 145 fsumsplitsn φ b A l A b D M k b F k = k b D F k k b l D F k = k b D F k + D F l
147 4 59 mgpplusg P = + M
148 99 eldifbd φ b A l A b ¬ l b
149 fveq2 k = l F k = F l
150 61 147 67 70 74 99 148 102 149 gsumunsn φ b A l A b M k b l F k = M k b F k P F l
151 150 fveq2d φ b A l A b D M k b l F k = D M k b F k P F l
152 151 adantr φ b A l A b D M k b F k = k b D F k D M k b l F k = D M k b F k P F l
153 109 146 152 3eqtr4rd φ b A l A b D M k b F k = k b D F k D M k b l F k = k b l D F k
154 153 ex φ b A l A b D M k b F k = k b D F k D M k b l F k = k b l D F k
155 154 anasss φ b A l A b D M k b F k = k b D F k D M k b l F k = k b l D F k
156 16 21 26 31 58 155 6 findcard2d φ D M k A F k = k A D F k
157 11 156 eqtrd φ D M F = k A D F k