| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1prod.1 |
|
| 2 |
|
deg1prod.2 |
|
| 3 |
|
deg1prod.3 |
|
| 4 |
|
deg1prod.4 |
|
| 5 |
|
deg1prod.5 |
|
| 6 |
|
deg1prod.6 |
|
| 7 |
|
deg1prod.7 |
|
| 8 |
|
deg1prod.8 |
|
| 9 |
8
|
feqmptd |
|
| 10 |
9
|
oveq2d |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
mpteq1 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
sumeq1 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
|
mpteq1 |
|
| 18 |
17
|
oveq2d |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
sumeq1 |
|
| 21 |
19 20
|
eqeq12d |
|
| 22 |
|
mpteq1 |
|
| 23 |
22
|
oveq2d |
|
| 24 |
23
|
fveq2d |
|
| 25 |
|
sumeq1 |
|
| 26 |
24 25
|
eqeq12d |
|
| 27 |
|
mpteq1 |
|
| 28 |
27
|
oveq2d |
|
| 29 |
28
|
fveq2d |
|
| 30 |
|
sumeq1 |
|
| 31 |
29 30
|
eqeq12d |
|
| 32 |
|
mpt0 |
|
| 33 |
32
|
oveq2i |
|
| 34 |
|
eqid |
|
| 35 |
4 34
|
ringidval |
|
| 36 |
35
|
gsum0 |
|
| 37 |
33 36
|
eqtri |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
fveq2d |
|
| 40 |
7
|
idomdomd |
|
| 41 |
|
domnring |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
2 42 43 34
|
ply1scl1 |
|
| 45 |
40 41 44
|
3syl |
|
| 46 |
45
|
fveq2d |
|
| 47 |
7
|
idomringd |
|
| 48 |
|
eqid |
|
| 49 |
48 43 47
|
ringidcld |
|
| 50 |
|
domnnzr |
|
| 51 |
|
eqid |
|
| 52 |
43 51
|
nzrnz |
|
| 53 |
40 50 52
|
3syl |
|
| 54 |
1 2 48 42 51
|
deg1scl |
|
| 55 |
47 49 53 54
|
syl3anc |
|
| 56 |
39 46 55
|
3eqtr2d |
|
| 57 |
|
sum0 |
|
| 58 |
56 57
|
eqtr4di |
|
| 59 |
|
eqid |
|
| 60 |
40
|
ad2antrr |
|
| 61 |
4 3
|
mgpbas |
|
| 62 |
2
|
ply1idom |
|
| 63 |
7 62
|
syl |
|
| 64 |
63
|
idomcringd |
|
| 65 |
4
|
crngmgp |
|
| 66 |
64 65
|
syl |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
6
|
ad2antrr |
|
| 69 |
|
simplr |
|
| 70 |
68 69
|
ssfid |
|
| 71 |
8
|
ad3antrrr |
|
| 72 |
69
|
sselda |
|
| 73 |
71 72
|
ffvelcdmd |
|
| 74 |
73
|
eldifad |
|
| 75 |
74
|
ralrimiva |
|
| 76 |
61 67 70 75
|
gsummptcl |
|
| 77 |
|
nfv |
|
| 78 |
|
eqid |
|
| 79 |
5
|
fvexi |
|
| 80 |
79
|
a1i |
|
| 81 |
8
|
ad2antrr |
|
| 82 |
|
simpr |
|
| 83 |
82
|
sselda |
|
| 84 |
81 83
|
ffvelcdmd |
|
| 85 |
|
eldifsni |
|
| 86 |
84 85
|
syl |
|
| 87 |
86
|
necomd |
|
| 88 |
77 78 80 87
|
nelrnmpt |
|
| 89 |
63
|
adantr |
|
| 90 |
6
|
adantr |
|
| 91 |
90 82
|
ssfid |
|
| 92 |
84
|
eldifad |
|
| 93 |
92
|
fmpttd |
|
| 94 |
4 3 5 89 91 93
|
domnprodeq0 |
|
| 95 |
94
|
necon3abid |
|
| 96 |
88 95
|
mpbird |
|
| 97 |
96
|
adantr |
|
| 98 |
8
|
ad2antrr |
|
| 99 |
|
simpr |
|
| 100 |
99
|
eldifad |
|
| 101 |
98 100
|
ffvelcdmd |
|
| 102 |
101
|
eldifad |
|
| 103 |
|
eldifsni |
|
| 104 |
101 103
|
syl |
|
| 105 |
1 2 3 59 5 60 76 97 102 104
|
deg1mul |
|
| 106 |
105
|
adantr |
|
| 107 |
|
simpr |
|
| 108 |
107
|
oveq1d |
|
| 109 |
106 108
|
eqtr2d |
|
| 110 |
|
nfv |
|
| 111 |
|
nfcv |
|
| 112 |
|
nfcv |
|
| 113 |
|
nfcv |
|
| 114 |
|
nfmpt1 |
|
| 115 |
112 113 114
|
nfov |
|
| 116 |
111 115
|
nffv |
|
| 117 |
|
nfcv |
|
| 118 |
117
|
nfsum1 |
|
| 119 |
116 118
|
nfeq |
|
| 120 |
110 119
|
nfan |
|
| 121 |
|
nfcv |
|
| 122 |
6
|
ad3antrrr |
|
| 123 |
|
simpllr |
|
| 124 |
122 123
|
ssfid |
|
| 125 |
|
simplr |
|
| 126 |
125
|
eldifbd |
|
| 127 |
47
|
ad4antr |
|
| 128 |
8
|
ad4antr |
|
| 129 |
123
|
sselda |
|
| 130 |
128 129
|
ffvelcdmd |
|
| 131 |
130
|
eldifad |
|
| 132 |
130 85
|
syl |
|
| 133 |
1 2 5 3
|
deg1nn0cl |
|
| 134 |
127 131 132 133
|
syl3anc |
|
| 135 |
134
|
nn0cnd |
|
| 136 |
|
2fveq3 |
|
| 137 |
47
|
ad3antrrr |
|
| 138 |
8
|
ad3antrrr |
|
| 139 |
125
|
eldifad |
|
| 140 |
138 139
|
ffvelcdmd |
|
| 141 |
140
|
eldifad |
|
| 142 |
140 103
|
syl |
|
| 143 |
1 2 5 3
|
deg1nn0cl |
|
| 144 |
137 141 142 143
|
syl3anc |
|
| 145 |
144
|
nn0cnd |
|
| 146 |
120 121 124 125 126 135 136 145
|
fsumsplitsn |
|
| 147 |
4 59
|
mgpplusg |
|
| 148 |
99
|
eldifbd |
|
| 149 |
|
fveq2 |
|
| 150 |
61 147 67 70 74 99 148 102 149
|
gsumunsn |
|
| 151 |
150
|
fveq2d |
|
| 152 |
151
|
adantr |
|
| 153 |
109 146 152
|
3eqtr4rd |
|
| 154 |
153
|
ex |
|
| 155 |
154
|
anasss |
|
| 156 |
16 21 26 31 58 155 6
|
findcard2d |
|
| 157 |
11 156
|
eqtrd |
|