| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
vieta.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
vieta.3 |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
vieta.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑊 ) |
| 5 |
|
vieta.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 6 |
|
vieta.e |
⊢ 𝐸 = ( 𝐼 eSymPoly 𝑅 ) |
| 7 |
|
vieta.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 8 |
|
vieta.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 9 |
|
vieta.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
vieta.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 11 |
|
vieta.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 12 |
|
vieta.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 13 |
|
vieta.h |
⊢ 𝐻 = ( ♯ ‘ 𝐼 ) |
| 14 |
|
vieta.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 15 |
|
vieta.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 16 |
|
vieta.z |
⊢ ( 𝜑 → 𝑍 : 𝐼 ⟶ 𝐵 ) |
| 17 |
|
vieta.f |
⊢ 𝐹 = ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) |
| 18 |
|
vietadeg1.1 |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 19 |
17
|
fveq2i |
⊢ ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 22 |
15
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 23 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ Ring ) |
| 24 |
|
ringgrp |
⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) |
| 25 |
22 23 24
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝑊 ∈ Grp ) |
| 27 |
10 1 20
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 28 |
22 27
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 30 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 31 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 32 |
15
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 33 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑊 ∈ AssAlg ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝑊 ∈ AssAlg ) |
| 36 |
16
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑍 ‘ 𝑛 ) ∈ 𝐵 ) |
| 37 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ IDomn → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 38 |
15 37
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 40 |
2 39
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 42 |
36 41
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑍 ‘ 𝑛 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 |
11 30 31 35 42
|
asclelbas |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 44 |
20 3 26 29 43
|
grpsubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 45 |
15
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 46 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 47 |
45 46
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 48 |
18 1 10 47
|
deg1vr |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑋 ) = 1 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) = 1 ) |
| 50 |
18 1 20
|
deg1cl |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑊 ) → ( 𝐷 ‘ 𝑋 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 51 |
28 50
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑋 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 52 |
51
|
nn0mnfxrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑋 ) ∈ ℝ* ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ℝ* ) |
| 54 |
49 53
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 1 ∈ ℝ* ) |
| 55 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 56 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 0 ∈ ℤ ) |
| 57 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 𝑊 ∈ Grp ) |
| 58 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 59 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 61 |
20 21 3
|
grpsubeq0 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ↔ 𝑋 = ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) |
| 62 |
61
|
biimpa |
⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ∈ ( Base ‘ 𝑊 ) ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 𝑋 = ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) |
| 63 |
57 58 59 60 62
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 𝑋 = ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) = ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) |
| 65 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 66 |
18 1 2 11
|
deg1sclle |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑍 ‘ 𝑛 ) ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ≤ 0 ) |
| 67 |
65 36 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ≤ 0 ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ≤ 0 ) |
| 69 |
64 68
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) ≤ 0 ) |
| 70 |
|
degltp1le |
⊢ ( ( ( 𝐷 ‘ 𝑋 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ 0 ∈ ℤ ) → ( ( 𝐷 ‘ 𝑋 ) < ( 0 + 1 ) ↔ ( 𝐷 ‘ 𝑋 ) ≤ 0 ) ) |
| 71 |
70
|
biimpar |
⊢ ( ( ( ( 𝐷 ‘ 𝑋 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ 0 ∈ ℤ ) ∧ ( 𝐷 ‘ 𝑋 ) ≤ 0 ) → ( 𝐷 ‘ 𝑋 ) < ( 0 + 1 ) ) |
| 72 |
55 56 69 71
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) < ( 0 + 1 ) ) |
| 73 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 74 |
72 73
|
breqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) < 1 ) |
| 75 |
53 54 74
|
xrgtned |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → 1 ≠ ( 𝐷 ‘ 𝑋 ) ) |
| 76 |
75
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ( 𝐷 ‘ 𝑋 ) ≠ 1 ) |
| 77 |
76
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) → ¬ ( 𝐷 ‘ 𝑋 ) = 1 ) |
| 78 |
49 77
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ¬ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 79 |
78
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ≠ ( 0g ‘ 𝑊 ) ) |
| 80 |
44 79
|
eldifsnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ∈ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
| 81 |
80
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) : 𝐼 ⟶ ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) ) |
| 82 |
18 1 20 4 21 14 15 81
|
deg1prod |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) ) = Σ 𝑘 ∈ 𝐼 ( 𝐷 ‘ ( ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ‘ 𝑘 ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) |
| 84 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) = ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) = ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) |
| 86 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) |
| 87 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ∈ V ) |
| 88 |
83 85 86 87
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ‘ 𝑘 ) = ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) |
| 89 |
88
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐷 ‘ ( ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ‘ 𝑘 ) ) = ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) ) |
| 90 |
18 1 20
|
deg1xrcl |
⊢ ( ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ∈ ( Base ‘ 𝑊 ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ∈ ℝ* ) |
| 91 |
43 90
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ∈ ℝ* ) |
| 92 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 93 |
92
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 0 ∈ ℝ* ) |
| 94 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 95 |
94
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 1 ∈ ℝ* ) |
| 96 |
|
0lt1 |
⊢ 0 < 1 |
| 97 |
96
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 0 < 1 ) |
| 98 |
91 93 95 67 97
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) < 1 ) |
| 99 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ 𝑋 ) = 1 ) |
| 100 |
98 99
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) < ( 𝐷 ‘ 𝑋 ) ) |
| 101 |
1 18 65 20 3 29 43 100
|
deg1sub |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) = ( 𝐷 ‘ 𝑋 ) ) |
| 102 |
101 99
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) = 1 ) |
| 103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) = 1 ) |
| 104 |
85
|
fveqeq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) = 1 ↔ ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) = 1 ) ) |
| 105 |
104
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝐼 ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐼 ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) = 1 ) |
| 106 |
103 105
|
sylib |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) = 1 ) |
| 107 |
106
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐷 ‘ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑘 ) ) ) ) = 1 ) |
| 108 |
89 107
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐷 ‘ ( ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ‘ 𝑘 ) ) = 1 ) |
| 109 |
108
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐼 ( 𝐷 ‘ ( ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ‘ 𝑘 ) ) = Σ 𝑘 ∈ 𝐼 1 ) |
| 110 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 111 |
|
fsumconst |
⊢ ( ( 𝐼 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ 𝐼 1 = ( ( ♯ ‘ 𝐼 ) · 1 ) ) |
| 112 |
14 110 111
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐼 1 = ( ( ♯ ‘ 𝐼 ) · 1 ) ) |
| 113 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 114 |
14 113
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 115 |
114
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℂ ) |
| 116 |
115
|
mulridd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) · 1 ) = ( ♯ ‘ 𝐼 ) ) |
| 117 |
116 13
|
eqtr4di |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐼 ) · 1 ) = 𝐻 ) |
| 118 |
109 112 117
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐼 ( 𝐷 ‘ ( ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ‘ 𝑘 ) ) = 𝐻 ) |
| 119 |
82 118
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) ) = 𝐻 ) |
| 120 |
19 119
|
eqtrid |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) = 𝐻 ) |