| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2z |
⊢ ( 𝑌 ∈ ℤ → ( 𝑌 + 1 ) ∈ ℤ ) |
| 2 |
|
degltlem1 |
⊢ ( ( 𝑋 ∈ ( ℕ0 ∪ { -∞ } ) ∧ ( 𝑌 + 1 ) ∈ ℤ ) → ( 𝑋 < ( 𝑌 + 1 ) ↔ 𝑋 ≤ ( ( 𝑌 + 1 ) − 1 ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝑋 ∈ ( ℕ0 ∪ { -∞ } ) ∧ 𝑌 ∈ ℤ ) → ( 𝑋 < ( 𝑌 + 1 ) ↔ 𝑋 ≤ ( ( 𝑌 + 1 ) − 1 ) ) ) |
| 4 |
|
zcn |
⊢ ( 𝑌 ∈ ℤ → 𝑌 ∈ ℂ ) |
| 5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 6 |
|
pncan |
⊢ ( ( 𝑌 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑌 + 1 ) − 1 ) = 𝑌 ) |
| 7 |
4 5 6
|
sylancl |
⊢ ( 𝑌 ∈ ℤ → ( ( 𝑌 + 1 ) − 1 ) = 𝑌 ) |
| 8 |
7
|
breq2d |
⊢ ( 𝑌 ∈ ℤ → ( 𝑋 ≤ ( ( 𝑌 + 1 ) − 1 ) ↔ 𝑋 ≤ 𝑌 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℕ0 ∪ { -∞ } ) ∧ 𝑌 ∈ ℤ ) → ( 𝑋 ≤ ( ( 𝑌 + 1 ) − 1 ) ↔ 𝑋 ≤ 𝑌 ) ) |
| 10 |
3 9
|
bitrd |
⊢ ( ( 𝑋 ∈ ( ℕ0 ∪ { -∞ } ) ∧ 𝑌 ∈ ℤ ) → ( 𝑋 < ( 𝑌 + 1 ) ↔ 𝑋 ≤ 𝑌 ) ) |