Metamath Proof Explorer


Theorem mdegaddle

Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
mdegaddle.i ( 𝜑𝐼𝑉 )
mdegaddle.r ( 𝜑𝑅 ∈ Ring )
mdegaddle.b 𝐵 = ( Base ‘ 𝑌 )
mdegaddle.p + = ( +g𝑌 )
mdegaddle.f ( 𝜑𝐹𝐵 )
mdegaddle.g ( 𝜑𝐺𝐵 )
Assertion mdegaddle ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 mdegaddle.y 𝑌 = ( 𝐼 mPoly 𝑅 )
2 mdegaddle.d 𝐷 = ( 𝐼 mDeg 𝑅 )
3 mdegaddle.i ( 𝜑𝐼𝑉 )
4 mdegaddle.r ( 𝜑𝑅 ∈ Ring )
5 mdegaddle.b 𝐵 = ( Base ‘ 𝑌 )
6 mdegaddle.p + = ( +g𝑌 )
7 mdegaddle.f ( 𝜑𝐹𝐵 )
8 mdegaddle.g ( 𝜑𝐺𝐵 )
9 eqid ( +g𝑅 ) = ( +g𝑅 )
10 1 5 9 6 7 8 mpladd ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹f ( +g𝑅 ) 𝐺 ) )
11 10 fveq1d ( 𝜑 → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ 𝑐 ) )
12 11 adantr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ 𝑐 ) )
13 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
14 eqid { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin }
15 1 13 5 14 7 mplelf ( 𝜑𝐹 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
16 15 ffnd ( 𝜑𝐹 Fn { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
17 16 adantr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝐹 Fn { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
18 1 13 5 14 8 mplelf ( 𝜑𝐺 : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
19 18 ffnd ( 𝜑𝐺 Fn { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
20 19 adantr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝐺 Fn { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
21 ovex ( ℕ0m 𝐼 ) ∈ V
22 21 rabex { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∈ V
23 22 a1i ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∈ V )
24 simpr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
25 fnfvof ( ( ( 𝐹 Fn { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ 𝐺 Fn { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ∧ ( { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∈ V ∧ 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) ) → ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹𝑐 ) ( +g𝑅 ) ( 𝐺𝑐 ) ) )
26 17 20 23 24 25 syl22anc ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹f ( +g𝑅 ) 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹𝑐 ) ( +g𝑅 ) ( 𝐺𝑐 ) ) )
27 12 26 eqtrd ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹𝑐 ) ( +g𝑅 ) ( 𝐺𝑐 ) ) )
28 27 adantrr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( ( 𝐹𝑐 ) ( +g𝑅 ) ( 𝐺𝑐 ) ) )
29 eqid ( 0g𝑅 ) = ( 0g𝑅 )
30 eqid ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) )
31 7 adantr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → 𝐹𝐵 )
32 simprl ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } )
33 2 1 5 mdegxrcl ( 𝐹𝐵 → ( 𝐷𝐹 ) ∈ ℝ* )
34 7 33 syl ( 𝜑 → ( 𝐷𝐹 ) ∈ ℝ* )
35 34 adantr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐷𝐹 ) ∈ ℝ* )
36 2 1 5 mdegxrcl ( 𝐺𝐵 → ( 𝐷𝐺 ) ∈ ℝ* )
37 8 36 syl ( 𝜑 → ( 𝐷𝐺 ) ∈ ℝ* )
38 37 34 ifcld ( 𝜑 → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* )
39 38 adantr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* )
40 nn0ssre 0 ⊆ ℝ
41 ressxr ℝ ⊆ ℝ*
42 40 41 sstri 0 ⊆ ℝ*
43 14 30 tdeglem1 ( 𝐼𝑉 → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 )
44 3 43 syl ( 𝜑 → ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 )
45 44 ffvelrnda ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℕ0 )
46 42 45 sseldi ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* )
47 35 39 46 3jca ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐷𝐹 ) ∈ ℝ* ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) )
48 47 adantrr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷𝐹 ) ∈ ℝ* ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) )
49 xrmax1 ( ( ( 𝐷𝐹 ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ* ) → ( 𝐷𝐹 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
50 34 37 49 syl2anc ( 𝜑 → ( 𝐷𝐹 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
51 50 adantr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷𝐹 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
52 simprr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) )
53 51 52 jca ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷𝐹 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) )
54 xrlelttr ( ( ( 𝐷𝐹 ) ∈ ℝ* ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) → ( ( ( 𝐷𝐹 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) → ( 𝐷𝐹 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) )
55 48 53 54 sylc ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷𝐹 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) )
56 2 1 5 29 14 30 31 32 55 mdeglt ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐹𝑐 ) = ( 0g𝑅 ) )
57 8 adantr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → 𝐺𝐵 )
58 37 adantr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( 𝐷𝐺 ) ∈ ℝ* )
59 58 39 46 3jca ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( ( 𝐷𝐺 ) ∈ ℝ* ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) )
60 59 adantrr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷𝐺 ) ∈ ℝ* ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) )
61 xrmax2 ( ( ( 𝐷𝐹 ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ* ) → ( 𝐷𝐺 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
62 34 37 61 syl2anc ( 𝜑 → ( 𝐷𝐺 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
63 62 adantr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷𝐺 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
64 63 52 jca ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐷𝐺 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) )
65 xrlelttr ( ( ( 𝐷𝐺 ) ∈ ℝ* ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ∈ ℝ* ) → ( ( ( 𝐷𝐺 ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) → ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) )
66 60 64 65 sylc ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐷𝐺 ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) )
67 2 1 5 29 14 30 57 32 66 mdeglt ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( 𝐺𝑐 ) = ( 0g𝑅 ) )
68 56 67 oveq12d ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹𝑐 ) ( +g𝑅 ) ( 𝐺𝑐 ) ) = ( ( 0g𝑅 ) ( +g𝑅 ) ( 0g𝑅 ) ) )
69 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
70 4 69 syl ( 𝜑𝑅 ∈ Grp )
71 13 29 ring0cl ( 𝑅 ∈ Ring → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
72 4 71 syl ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) )
73 13 9 29 grplid ( ( 𝑅 ∈ Grp ∧ ( 0g𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g𝑅 ) ( +g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
74 70 72 73 syl2anc ( 𝜑 → ( ( 0g𝑅 ) ( +g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
75 74 adantr ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 0g𝑅 ) ( +g𝑅 ) ( 0g𝑅 ) ) = ( 0g𝑅 ) )
76 68 75 eqtrd ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹𝑐 ) ( +g𝑅 ) ( 𝐺𝑐 ) ) = ( 0g𝑅 ) )
77 28 76 eqtrd ( ( 𝜑 ∧ ( 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) ) ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g𝑅 ) )
78 77 expr ( ( 𝜑𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ) → ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g𝑅 ) ) )
79 78 ralrimiva ( 𝜑 → ∀ 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g𝑅 ) ) )
80 1 mplring ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
81 3 4 80 syl2anc ( 𝜑𝑌 ∈ Ring )
82 5 6 ringacl ( ( 𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 + 𝐺 ) ∈ 𝐵 )
83 81 7 8 82 syl3anc ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 )
84 2 1 5 29 14 30 mdegleb ( ( ( 𝐹 + 𝐺 ) ∈ 𝐵 ∧ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ↔ ∀ 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g𝑅 ) ) ) )
85 83 38 84 syl2anc ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ↔ ∀ 𝑐 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) < ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ‘ 𝑐 ) → ( ( 𝐹 + 𝐺 ) ‘ 𝑐 ) = ( 0g𝑅 ) ) ) )
86 79 85 mpbird ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )