Metamath Proof Explorer


Theorem degltp1le

Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Assertion degltp1le X0−∞YX<Y+1XY

Proof

Step Hyp Ref Expression
1 peano2z YY+1
2 degltlem1 X0−∞Y+1X<Y+1XY+1-1
3 1 2 sylan2 X0−∞YX<Y+1XY+1-1
4 zcn YY
5 ax-1cn 1
6 pncan Y1Y+1-1=Y
7 4 5 6 sylancl YY+1-1=Y
8 7 breq2d YXY+1-1XY
9 8 adantl X0−∞YXY+1-1XY
10 3 9 bitrd X0−∞YX<Y+1XY