| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlmulval.q |
⊢ 𝑄 = ( 𝐼 eval 𝑆 ) |
| 2 |
|
evlmulval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) |
| 3 |
|
evlmulval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 4 |
|
evlmulval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
|
evlmulval.g |
⊢ ∙ = ( .r ‘ 𝑃 ) |
| 6 |
|
evlmulval.f |
⊢ · = ( .r ‘ 𝑆 ) |
| 7 |
|
evlmulval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) |
| 8 |
|
evlmulval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 9 |
|
evlmulval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 10 |
|
evlmulval.m |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) |
| 11 |
|
evlmulval.n |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
| 13 |
1 3 2 12
|
evlrhm |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 14 |
7 8 13
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 15 |
|
rhmrcl1 |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Ring ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 17 |
10
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 18 |
11
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
| 19 |
4 5 16 17 18
|
ringcld |
⊢ ( 𝜑 → ( 𝑀 ∙ 𝑁 ) ∈ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 21 |
4 5 20
|
rhmmul |
⊢ ( ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 22 |
14 17 18 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 24 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
| 25 |
4 23
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 26 |
14 25
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 27 |
26 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 28 |
26 18
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 29 |
12 23 8 24 27 28 6 20
|
pwsmulrval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ) |
| 30 |
22 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ) |
| 31 |
30
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) ) |
| 32 |
12 3 23 8 24 27
|
pwselbas |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 33 |
32
|
ffnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 34 |
12 3 23 8 24 28
|
pwselbas |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 35 |
34
|
ffnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 36 |
|
fnfvof |
⊢ ( ( ( ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ∧ ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) ∧ ( ( 𝐾 ↑m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) ) → ( ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
| 37 |
33 35 24 9 36
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ∘f · ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
| 38 |
10
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
| 39 |
11
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) |
| 40 |
38 39
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 · 𝑊 ) ) |
| 41 |
31 37 40
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) |
| 42 |
19 41
|
jca |
⊢ ( 𝜑 → ( ( 𝑀 ∙ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) ) |