| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfv.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyfv.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplyfv.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplyfv.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 5 |
|
eqid |
⊢ ( SymGrp ‘ 𝐼 ) = ( SymGrp ‘ 𝐼 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) = ( Base ‘ ( SymGrp ‘ 𝐼 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 8 |
|
elfznn0 |
⊢ ( 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) → 𝐾 ∈ ℕ0 ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 10 |
1 2 3 9 7
|
esplympl |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) ) |
| 11 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐼 ∈ Fin ) |
| 12 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 13 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ℕ0 ∈ V ) |
| 14 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) → 𝐷 ⊆ ( ℕ0 ↑m 𝐼 ) ) |
| 16 |
15
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 17 |
11 13 16
|
elmaprd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 18 |
17
|
fdmd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → dom 𝑥 = 𝐼 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) |
| 20 |
5 6
|
symgbasf1o |
⊢ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) → 𝑝 : 𝐼 –1-1-onto→ 𝐼 ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑝 : 𝐼 –1-1-onto→ 𝐼 ) |
| 22 |
|
f1ofo |
⊢ ( 𝑝 : 𝐼 –1-1-onto→ 𝐼 → 𝑝 : 𝐼 –onto→ 𝐼 ) |
| 23 |
|
forn |
⊢ ( 𝑝 : 𝐼 –onto→ 𝐼 → ran 𝑝 = 𝐼 ) |
| 24 |
21 22 23
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ran 𝑝 = 𝐼 ) |
| 25 |
18 24
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → dom 𝑥 = ran 𝑝 ) |
| 26 |
|
rncoeq |
⊢ ( dom 𝑥 = ran 𝑝 → ran ( 𝑥 ∘ 𝑝 ) = ran 𝑥 ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ran ( 𝑥 ∘ 𝑝 ) = ran 𝑥 ) |
| 28 |
27
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ran ( 𝑥 ∘ 𝑝 ) ⊆ { 0 , 1 } ↔ ran 𝑥 ⊆ { 0 , 1 } ) ) |
| 29 |
|
f1ocnv |
⊢ ( 𝑝 : 𝐼 –1-1-onto→ 𝐼 → ◡ 𝑝 : 𝐼 –1-1-onto→ 𝐼 ) |
| 30 |
|
f1of1 |
⊢ ( ◡ 𝑝 : 𝐼 –1-1-onto→ 𝐼 → ◡ 𝑝 : 𝐼 –1-1→ 𝐼 ) |
| 31 |
21 29 30
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ◡ 𝑝 : 𝐼 –1-1→ 𝐼 ) |
| 32 |
|
cnvimass |
⊢ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ⊆ dom 𝑥 |
| 33 |
32 17
|
fssdm |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐼 ) |
| 34 |
31 33 11
|
hashimaf1 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ♯ ‘ ( ◡ 𝑝 “ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) ) = ( ♯ ‘ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 35 |
|
c0ex |
⊢ 0 ∈ V |
| 36 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 0 ∈ V ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) → 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) |
| 38 |
|
f1of |
⊢ ( 𝑝 : 𝐼 –1-1-onto→ 𝐼 → 𝑝 : 𝐼 ⟶ 𝐼 ) |
| 39 |
37 20 38
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) → 𝑝 : 𝐼 ⟶ 𝐼 ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑝 : 𝐼 ⟶ 𝐼 ) |
| 41 |
17 40
|
fcod |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∘ 𝑝 ) : 𝐼 ⟶ ℕ0 ) |
| 42 |
|
fsuppeq |
⊢ ( ( 𝐼 ∈ Fin ∧ 0 ∈ V ) → ( ( 𝑥 ∘ 𝑝 ) : 𝐼 ⟶ ℕ0 → ( ( 𝑥 ∘ 𝑝 ) supp 0 ) = ( ◡ ( 𝑥 ∘ 𝑝 ) “ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 0 ∈ V ) ∧ ( 𝑥 ∘ 𝑝 ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑥 ∘ 𝑝 ) supp 0 ) = ( ◡ ( 𝑥 ∘ 𝑝 ) “ ( ℕ0 ∖ { 0 } ) ) ) |
| 44 |
11 36 41 43
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑥 ∘ 𝑝 ) supp 0 ) = ( ◡ ( 𝑥 ∘ 𝑝 ) “ ( ℕ0 ∖ { 0 } ) ) ) |
| 45 |
|
cnvco |
⊢ ◡ ( 𝑥 ∘ 𝑝 ) = ( ◡ 𝑝 ∘ ◡ 𝑥 ) |
| 46 |
45
|
imaeq1i |
⊢ ( ◡ ( 𝑥 ∘ 𝑝 ) “ ( ℕ0 ∖ { 0 } ) ) = ( ( ◡ 𝑝 ∘ ◡ 𝑥 ) “ ( ℕ0 ∖ { 0 } ) ) |
| 47 |
|
imaco |
⊢ ( ( ◡ 𝑝 ∘ ◡ 𝑥 ) “ ( ℕ0 ∖ { 0 } ) ) = ( ◡ 𝑝 “ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) |
| 48 |
46 47
|
eqtri |
⊢ ( ◡ ( 𝑥 ∘ 𝑝 ) “ ( ℕ0 ∖ { 0 } ) ) = ( ◡ 𝑝 “ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) |
| 49 |
44 48
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑥 ∘ 𝑝 ) supp 0 ) = ( ◡ 𝑝 “ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ♯ ‘ ( ( 𝑥 ∘ 𝑝 ) supp 0 ) ) = ( ♯ ‘ ( ◡ 𝑝 “ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) ) ) |
| 51 |
|
fsuppeq |
⊢ ( ( 𝐼 ∈ Fin ∧ 0 ∈ V ) → ( 𝑥 : 𝐼 ⟶ ℕ0 → ( 𝑥 supp 0 ) = ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 52 |
51
|
imp |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 0 ∈ V ) ∧ 𝑥 : 𝐼 ⟶ ℕ0 ) → ( 𝑥 supp 0 ) = ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) |
| 53 |
11 36 17 52
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 supp 0 ) = ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ♯ ‘ ( 𝑥 supp 0 ) ) = ( ♯ ‘ ( ◡ 𝑥 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 55 |
34 50 54
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ♯ ‘ ( ( 𝑥 ∘ 𝑝 ) supp 0 ) ) = ( ♯ ‘ ( 𝑥 supp 0 ) ) ) |
| 56 |
55
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( ♯ ‘ ( ( 𝑥 ∘ 𝑝 ) supp 0 ) ) = 𝐾 ↔ ( ♯ ‘ ( 𝑥 supp 0 ) ) = 𝐾 ) ) |
| 57 |
28 56
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( ran ( 𝑥 ∘ 𝑝 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑥 ∘ 𝑝 ) supp 0 ) ) = 𝐾 ) ↔ ( ran 𝑥 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑥 supp 0 ) ) = 𝐾 ) ) ) |
| 58 |
57
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → if ( ( ran ( 𝑥 ∘ 𝑝 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑥 ∘ 𝑝 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = if ( ( ran 𝑥 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑥 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 59 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 60 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐾 ∈ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) |
| 61 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 62 |
61 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 63 |
5 6 11 19 62
|
mplvrpmlem |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∘ 𝑝 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 64 |
63 1
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∘ 𝑝 ) ∈ 𝐷 ) |
| 65 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 66 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 67 |
1 11 59 60 64 65 66
|
esplyfv |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ ( 𝑥 ∘ 𝑝 ) ) = if ( ( ran ( 𝑥 ∘ 𝑝 ) ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( ( 𝑥 ∘ 𝑝 ) supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 68 |
1 11 59 60 61 65 66
|
esplyfv |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑥 ) = if ( ( ran 𝑥 ⊆ { 0 , 1 } ∧ ( ♯ ‘ ( 𝑥 supp 0 ) ) = 𝐾 ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 69 |
58 67 68
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝐼 ) ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ ( 𝑥 ∘ 𝑝 ) ) = ( ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ‘ 𝑥 ) ) |
| 70 |
5 6 7 1 2 3 10 69
|
issply |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) ∈ ( 𝐼 SymPoly 𝑅 ) ) |