| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → 𝑋 ∈ 𝑂 ) |
| 2 |
1
|
snssd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → { 𝑋 } ⊆ 𝑂 ) |
| 3 |
|
indval |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ { 𝑋 } ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ { 𝑋 } ) = ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ { 𝑋 } , 1 , 0 ) ) ) |
| 4 |
2 3
|
syldan |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ { 𝑋 } ) = ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ { 𝑋 } , 1 , 0 ) ) ) |
| 5 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 ) |
| 6 |
5
|
a1i |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → ( 𝑥 ∈ { 𝑋 } ↔ 𝑥 = 𝑋 ) ) |
| 7 |
6
|
ifbid |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → if ( 𝑥 ∈ { 𝑋 } , 1 , 0 ) = if ( 𝑥 = 𝑋 , 1 , 0 ) ) |
| 8 |
7
|
mpteq2dv |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ { 𝑋 } , 1 , 0 ) ) = ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) ) |
| 9 |
4 8
|
eqtrd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑋 ∈ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ { 𝑋 } ) = ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 = 𝑋 , 1 , 0 ) ) ) |