Metamath Proof Explorer


Theorem indsn

Description: The indicator function of a singleton. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Assertion indsn O V X O 𝟙 O X = x O if x = X 1 0

Proof

Step Hyp Ref Expression
1 simpr O V X O X O
2 1 snssd O V X O X O
3 indval O V X O 𝟙 O X = x O if x X 1 0
4 2 3 syldan O V X O 𝟙 O X = x O if x X 1 0
5 velsn x X x = X
6 5 a1i O V X O x X x = X
7 6 ifbid O V X O if x X 1 0 = if x = X 1 0
8 7 mpteq2dv O V X O x O if x X 1 0 = x O if x = X 1 0
9 4 8 eqtrd O V X O 𝟙 O X = x O if x = X 1 0