Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Indicator Functions
indsn
Next ⟩
indf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
indsn
Description:
The indicator function of a singleton.
(Contributed by
Thierry Arnoux
, 15-Feb-2026)
Ref
Expression
Assertion
indsn
⊢
O
∈
V
∧
X
∈
O
→
𝟙
O
⁡
X
=
x
∈
O
⟼
if
x
=
X
1
0
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
O
∈
V
∧
X
∈
O
→
X
∈
O
2
1
snssd
⊢
O
∈
V
∧
X
∈
O
→
X
⊆
O
3
indval
⊢
O
∈
V
∧
X
⊆
O
→
𝟙
O
⁡
X
=
x
∈
O
⟼
if
x
∈
X
1
0
4
2
3
syldan
⊢
O
∈
V
∧
X
∈
O
→
𝟙
O
⁡
X
=
x
∈
O
⟼
if
x
∈
X
1
0
5
velsn
⊢
x
∈
X
↔
x
=
X
6
5
a1i
⊢
O
∈
V
∧
X
∈
O
→
x
∈
X
↔
x
=
X
7
6
ifbid
⊢
O
∈
V
∧
X
∈
O
→
if
x
∈
X
1
0
=
if
x
=
X
1
0
8
7
mpteq2dv
⊢
O
∈
V
∧
X
∈
O
→
x
∈
O
⟼
if
x
∈
X
1
0
=
x
∈
O
⟼
if
x
=
X
1
0
9
4
8
eqtrd
⊢
O
∈
V
∧
X
∈
O
→
𝟙
O
⁡
X
=
x
∈
O
⟼
if
x
=
X
1
0