| Step |
Hyp |
Ref |
Expression |
| 1 |
|
splyval.s |
|- S = ( SymGrp ` I ) |
| 2 |
|
splyval.p |
|- P = ( Base ` S ) |
| 3 |
|
splyval.m |
|- M = ( Base ` ( I mPoly R ) ) |
| 4 |
|
splyval.a |
|- A = ( d e. P , f e. M |-> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) |
| 5 |
|
splyval.i |
|- ( ph -> I e. V ) |
| 6 |
|
splysubrg.r |
|- ( ph -> R e. Ring ) |
| 7 |
1 2 3 4 5 6
|
splyval |
|- ( ph -> ( I SymPoly R ) = ( M FixPts A ) ) |
| 8 |
|
eqid |
|- ( f e. M |-> ( d A f ) ) = ( f e. M |-> ( d A f ) ) |
| 9 |
1 2 3 4 5
|
mplvrpmga |
|- ( ph -> A e. ( S GrpAct M ) ) |
| 10 |
|
coeq2 |
|- ( d = e -> ( x o. d ) = ( x o. e ) ) |
| 11 |
10
|
fveq2d |
|- ( d = e -> ( f ` ( x o. d ) ) = ( f ` ( x o. e ) ) ) |
| 12 |
11
|
mpteq2dv |
|- ( d = e -> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) = ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. e ) ) ) ) |
| 13 |
|
fveq1 |
|- ( f = g -> ( f ` ( x o. e ) ) = ( g ` ( x o. e ) ) ) |
| 14 |
13
|
mpteq2dv |
|- ( f = g -> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. e ) ) ) = ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( g ` ( x o. e ) ) ) ) |
| 15 |
12 14
|
cbvmpov |
|- ( d e. P , f e. M |-> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( f ` ( x o. d ) ) ) ) = ( e e. P , g e. M |-> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( g ` ( x o. e ) ) ) ) |
| 16 |
4 15
|
eqtri |
|- A = ( e e. P , g e. M |-> ( x e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( g ` ( x o. e ) ) ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ d e. P ) -> I e. V ) |
| 18 |
|
oveq2 |
|- ( f = g -> ( d A f ) = ( d A g ) ) |
| 19 |
18
|
cbvmptv |
|- ( f e. M |-> ( d A f ) ) = ( g e. M |-> ( d A g ) ) |
| 20 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 21 |
6
|
adantr |
|- ( ( ph /\ d e. P ) -> R e. Ring ) |
| 22 |
|
simpr |
|- ( ( ph /\ d e. P ) -> d e. P ) |
| 23 |
1 2 3 16 17 19 20 21 22
|
mplvrpmrhm |
|- ( ( ph /\ d e. P ) -> ( f e. M |-> ( d A f ) ) e. ( ( I mPoly R ) RingHom ( I mPoly R ) ) ) |
| 24 |
2 3 8 9 23
|
fxpsubrg |
|- ( ph -> ( M FixPts A ) e. ( SubRing ` ( I mPoly R ) ) ) |
| 25 |
7 24
|
eqeltrd |
|- ( ph -> ( I SymPoly R ) e. ( SubRing ` ( I mPoly R ) ) ) |