Metamath Proof Explorer


Definition df-fwddifn

Description: Define the nth forward difference operator. This works out to be the forward difference operator iterated n times. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Assertion df-fwddifn n = ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfwddifn n
1 vn 𝑛
2 cn0 0
3 vf 𝑓
4 cc
5 cpm pm
6 4 4 5 co ( ℂ ↑pm ℂ )
7 vx 𝑥
8 vy 𝑦
9 vk 𝑘
10 cc0 0
11 cfz ...
12 1 cv 𝑛
13 10 12 11 co ( 0 ... 𝑛 )
14 8 cv 𝑦
15 caddc +
16 9 cv 𝑘
17 14 16 15 co ( 𝑦 + 𝑘 )
18 3 cv 𝑓
19 18 cdm dom 𝑓
20 17 19 wcel ( 𝑦 + 𝑘 ) ∈ dom 𝑓
21 20 9 13 wral 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓
22 21 8 4 crab { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 }
23 cbc C
24 12 16 23 co ( 𝑛 C 𝑘 )
25 cmul ·
26 c1 1
27 26 cneg - 1
28 cexp
29 cmin
30 12 16 29 co ( 𝑛𝑘 )
31 27 30 28 co ( - 1 ↑ ( 𝑛𝑘 ) )
32 7 cv 𝑥
33 32 16 15 co ( 𝑥 + 𝑘 )
34 33 18 cfv ( 𝑓 ‘ ( 𝑥 + 𝑘 ) )
35 31 34 25 co ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) )
36 24 35 25 co ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) )
37 13 36 9 csu Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) )
38 7 22 37 cmpt ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) )
39 1 3 2 6 38 cmpo ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) )
40 0 39 wceq n = ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) )