| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfwddifn | ⊢  △n | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cn0 | ⊢ ℕ0 | 
						
							| 3 |  | vf | ⊢ 𝑓 | 
						
							| 4 |  | cc | ⊢ ℂ | 
						
							| 5 |  | cpm | ⊢  ↑pm | 
						
							| 6 | 4 4 5 | co | ⊢ ( ℂ  ↑pm  ℂ ) | 
						
							| 7 |  | vx | ⊢ 𝑥 | 
						
							| 8 |  | vy | ⊢ 𝑦 | 
						
							| 9 |  | vk | ⊢ 𝑘 | 
						
							| 10 |  | cc0 | ⊢ 0 | 
						
							| 11 |  | cfz | ⊢ ... | 
						
							| 12 | 1 | cv | ⊢ 𝑛 | 
						
							| 13 | 10 12 11 | co | ⊢ ( 0 ... 𝑛 ) | 
						
							| 14 | 8 | cv | ⊢ 𝑦 | 
						
							| 15 |  | caddc | ⊢  + | 
						
							| 16 | 9 | cv | ⊢ 𝑘 | 
						
							| 17 | 14 16 15 | co | ⊢ ( 𝑦  +  𝑘 ) | 
						
							| 18 | 3 | cv | ⊢ 𝑓 | 
						
							| 19 | 18 | cdm | ⊢ dom  𝑓 | 
						
							| 20 | 17 19 | wcel | ⊢ ( 𝑦  +  𝑘 )  ∈  dom  𝑓 | 
						
							| 21 | 20 9 13 | wral | ⊢ ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 | 
						
							| 22 | 21 8 4 | crab | ⊢ { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 } | 
						
							| 23 |  | cbc | ⊢ C | 
						
							| 24 | 12 16 23 | co | ⊢ ( 𝑛 C 𝑘 ) | 
						
							| 25 |  | cmul | ⊢  · | 
						
							| 26 |  | c1 | ⊢ 1 | 
						
							| 27 | 26 | cneg | ⊢ - 1 | 
						
							| 28 |  | cexp | ⊢ ↑ | 
						
							| 29 |  | cmin | ⊢  − | 
						
							| 30 | 12 16 29 | co | ⊢ ( 𝑛  −  𝑘 ) | 
						
							| 31 | 27 30 28 | co | ⊢ ( - 1 ↑ ( 𝑛  −  𝑘 ) ) | 
						
							| 32 | 7 | cv | ⊢ 𝑥 | 
						
							| 33 | 32 16 15 | co | ⊢ ( 𝑥  +  𝑘 ) | 
						
							| 34 | 33 18 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) | 
						
							| 35 | 31 34 25 | co | ⊢ ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) | 
						
							| 36 | 24 35 25 | co | ⊢ ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) | 
						
							| 37 | 13 36 9 | csu | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) | 
						
							| 38 | 7 22 37 | cmpt | ⊢ ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) | 
						
							| 39 | 1 3 2 6 38 | cmpo | ⊢ ( 𝑛  ∈  ℕ0 ,  𝑓  ∈  ( ℂ  ↑pm  ℂ )  ↦  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) | 
						
							| 40 | 0 39 | wceq | ⊢  △n   =  ( 𝑛  ∈  ℕ0 ,  𝑓  ∈  ( ℂ  ↑pm  ℂ )  ↦  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) |