| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfwddifn |
⊢ △n |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cn0 |
⊢ ℕ0 |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
cc |
⊢ ℂ |
| 5 |
|
cpm |
⊢ ↑pm |
| 6 |
4 4 5
|
co |
⊢ ( ℂ ↑pm ℂ ) |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
|
vy |
⊢ 𝑦 |
| 9 |
|
vk |
⊢ 𝑘 |
| 10 |
|
cc0 |
⊢ 0 |
| 11 |
|
cfz |
⊢ ... |
| 12 |
1
|
cv |
⊢ 𝑛 |
| 13 |
10 12 11
|
co |
⊢ ( 0 ... 𝑛 ) |
| 14 |
8
|
cv |
⊢ 𝑦 |
| 15 |
|
caddc |
⊢ + |
| 16 |
9
|
cv |
⊢ 𝑘 |
| 17 |
14 16 15
|
co |
⊢ ( 𝑦 + 𝑘 ) |
| 18 |
3
|
cv |
⊢ 𝑓 |
| 19 |
18
|
cdm |
⊢ dom 𝑓 |
| 20 |
17 19
|
wcel |
⊢ ( 𝑦 + 𝑘 ) ∈ dom 𝑓 |
| 21 |
20 9 13
|
wral |
⊢ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 |
| 22 |
21 8 4
|
crab |
⊢ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } |
| 23 |
|
cbc |
⊢ C |
| 24 |
12 16 23
|
co |
⊢ ( 𝑛 C 𝑘 ) |
| 25 |
|
cmul |
⊢ · |
| 26 |
|
c1 |
⊢ 1 |
| 27 |
26
|
cneg |
⊢ - 1 |
| 28 |
|
cexp |
⊢ ↑ |
| 29 |
|
cmin |
⊢ − |
| 30 |
12 16 29
|
co |
⊢ ( 𝑛 − 𝑘 ) |
| 31 |
27 30 28
|
co |
⊢ ( - 1 ↑ ( 𝑛 − 𝑘 ) ) |
| 32 |
7
|
cv |
⊢ 𝑥 |
| 33 |
32 16 15
|
co |
⊢ ( 𝑥 + 𝑘 ) |
| 34 |
33 18
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) |
| 35 |
31 34 25
|
co |
⊢ ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) |
| 36 |
24 35 25
|
co |
⊢ ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) |
| 37 |
13 36 9
|
csu |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) |
| 38 |
7 22 37
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) |
| 39 |
1 3 2 6 38
|
cmpo |
⊢ ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) |
| 40 |
0 39
|
wceq |
⊢ △n = ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) |