Step |
Hyp |
Ref |
Expression |
0 |
|
cfwddifn |
|- _/_\^n |
1 |
|
vn |
|- n |
2 |
|
cn0 |
|- NN0 |
3 |
|
vf |
|- f |
4 |
|
cc |
|- CC |
5 |
|
cpm |
|- ^pm |
6 |
4 4 5
|
co |
|- ( CC ^pm CC ) |
7 |
|
vx |
|- x |
8 |
|
vy |
|- y |
9 |
|
vk |
|- k |
10 |
|
cc0 |
|- 0 |
11 |
|
cfz |
|- ... |
12 |
1
|
cv |
|- n |
13 |
10 12 11
|
co |
|- ( 0 ... n ) |
14 |
8
|
cv |
|- y |
15 |
|
caddc |
|- + |
16 |
9
|
cv |
|- k |
17 |
14 16 15
|
co |
|- ( y + k ) |
18 |
3
|
cv |
|- f |
19 |
18
|
cdm |
|- dom f |
20 |
17 19
|
wcel |
|- ( y + k ) e. dom f |
21 |
20 9 13
|
wral |
|- A. k e. ( 0 ... n ) ( y + k ) e. dom f |
22 |
21 8 4
|
crab |
|- { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |
23 |
|
cbc |
|- _C |
24 |
12 16 23
|
co |
|- ( n _C k ) |
25 |
|
cmul |
|- x. |
26 |
|
c1 |
|- 1 |
27 |
26
|
cneg |
|- -u 1 |
28 |
|
cexp |
|- ^ |
29 |
|
cmin |
|- - |
30 |
12 16 29
|
co |
|- ( n - k ) |
31 |
27 30 28
|
co |
|- ( -u 1 ^ ( n - k ) ) |
32 |
7
|
cv |
|- x |
33 |
32 16 15
|
co |
|- ( x + k ) |
34 |
33 18
|
cfv |
|- ( f ` ( x + k ) ) |
35 |
31 34 25
|
co |
|- ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) |
36 |
24 35 25
|
co |
|- ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) |
37 |
13 36 9
|
csu |
|- sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) |
38 |
7 22 37
|
cmpt |
|- ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) |
39 |
1 3 2 6 38
|
cmpo |
|- ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) |
40 |
0 39
|
wceq |
|- _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) |