| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfwddifn |
|- _/_\^n |
| 1 |
|
vn |
|- n |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
vf |
|- f |
| 4 |
|
cc |
|- CC |
| 5 |
|
cpm |
|- ^pm |
| 6 |
4 4 5
|
co |
|- ( CC ^pm CC ) |
| 7 |
|
vx |
|- x |
| 8 |
|
vy |
|- y |
| 9 |
|
vk |
|- k |
| 10 |
|
cc0 |
|- 0 |
| 11 |
|
cfz |
|- ... |
| 12 |
1
|
cv |
|- n |
| 13 |
10 12 11
|
co |
|- ( 0 ... n ) |
| 14 |
8
|
cv |
|- y |
| 15 |
|
caddc |
|- + |
| 16 |
9
|
cv |
|- k |
| 17 |
14 16 15
|
co |
|- ( y + k ) |
| 18 |
3
|
cv |
|- f |
| 19 |
18
|
cdm |
|- dom f |
| 20 |
17 19
|
wcel |
|- ( y + k ) e. dom f |
| 21 |
20 9 13
|
wral |
|- A. k e. ( 0 ... n ) ( y + k ) e. dom f |
| 22 |
21 8 4
|
crab |
|- { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |
| 23 |
|
cbc |
|- _C |
| 24 |
12 16 23
|
co |
|- ( n _C k ) |
| 25 |
|
cmul |
|- x. |
| 26 |
|
c1 |
|- 1 |
| 27 |
26
|
cneg |
|- -u 1 |
| 28 |
|
cexp |
|- ^ |
| 29 |
|
cmin |
|- - |
| 30 |
12 16 29
|
co |
|- ( n - k ) |
| 31 |
27 30 28
|
co |
|- ( -u 1 ^ ( n - k ) ) |
| 32 |
7
|
cv |
|- x |
| 33 |
32 16 15
|
co |
|- ( x + k ) |
| 34 |
33 18
|
cfv |
|- ( f ` ( x + k ) ) |
| 35 |
31 34 25
|
co |
|- ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) |
| 36 |
24 35 25
|
co |
|- ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) |
| 37 |
13 36 9
|
csu |
|- sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) |
| 38 |
7 22 37
|
cmpt |
|- ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) |
| 39 |
1 3 2 6 38
|
cmpo |
|- ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) |
| 40 |
0 39
|
wceq |
|- _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) |