| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cfwddifn |  |-  _/_\^n | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | vf |  |-  f | 
						
							| 4 |  | cc |  |-  CC | 
						
							| 5 |  | cpm |  |-  ^pm | 
						
							| 6 | 4 4 5 | co |  |-  ( CC ^pm CC ) | 
						
							| 7 |  | vx |  |-  x | 
						
							| 8 |  | vy |  |-  y | 
						
							| 9 |  | vk |  |-  k | 
						
							| 10 |  | cc0 |  |-  0 | 
						
							| 11 |  | cfz |  |-  ... | 
						
							| 12 | 1 | cv |  |-  n | 
						
							| 13 | 10 12 11 | co |  |-  ( 0 ... n ) | 
						
							| 14 | 8 | cv |  |-  y | 
						
							| 15 |  | caddc |  |-  + | 
						
							| 16 | 9 | cv |  |-  k | 
						
							| 17 | 14 16 15 | co |  |-  ( y + k ) | 
						
							| 18 | 3 | cv |  |-  f | 
						
							| 19 | 18 | cdm |  |-  dom f | 
						
							| 20 | 17 19 | wcel |  |-  ( y + k ) e. dom f | 
						
							| 21 | 20 9 13 | wral |  |-  A. k e. ( 0 ... n ) ( y + k ) e. dom f | 
						
							| 22 | 21 8 4 | crab |  |-  { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } | 
						
							| 23 |  | cbc |  |-  _C | 
						
							| 24 | 12 16 23 | co |  |-  ( n _C k ) | 
						
							| 25 |  | cmul |  |-  x. | 
						
							| 26 |  | c1 |  |-  1 | 
						
							| 27 | 26 | cneg |  |-  -u 1 | 
						
							| 28 |  | cexp |  |-  ^ | 
						
							| 29 |  | cmin |  |-  - | 
						
							| 30 | 12 16 29 | co |  |-  ( n - k ) | 
						
							| 31 | 27 30 28 | co |  |-  ( -u 1 ^ ( n - k ) ) | 
						
							| 32 | 7 | cv |  |-  x | 
						
							| 33 | 32 16 15 | co |  |-  ( x + k ) | 
						
							| 34 | 33 18 | cfv |  |-  ( f ` ( x + k ) ) | 
						
							| 35 | 31 34 25 | co |  |-  ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) | 
						
							| 36 | 24 35 25 | co |  |-  ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) | 
						
							| 37 | 13 36 9 | csu |  |-  sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) | 
						
							| 38 | 7 22 37 | cmpt |  |-  ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) | 
						
							| 39 | 1 3 2 6 38 | cmpo |  |-  ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) | 
						
							| 40 | 0 39 | wceq |  |-  _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) |