| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifval.1 |  |-  ( ph -> A C_ CC ) | 
						
							| 2 |  | fwddifval.2 |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | fwddifval.3 |  |-  ( ph -> X e. A ) | 
						
							| 4 |  | fwddifval.4 |  |-  ( ph -> ( X + 1 ) e. A ) | 
						
							| 5 |  | df-fwddif |  |-  _/_\ = ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) ) | 
						
							| 6 |  | dmeq |  |-  ( f = F -> dom f = dom F ) | 
						
							| 7 | 6 | eleq2d |  |-  ( f = F -> ( ( y + 1 ) e. dom f <-> ( y + 1 ) e. dom F ) ) | 
						
							| 8 | 6 7 | rabeqbidv |  |-  ( f = F -> { y e. dom f | ( y + 1 ) e. dom f } = { y e. dom F | ( y + 1 ) e. dom F } ) | 
						
							| 9 |  | fveq1 |  |-  ( f = F -> ( f ` ( x + 1 ) ) = ( F ` ( x + 1 ) ) ) | 
						
							| 10 |  | fveq1 |  |-  ( f = F -> ( f ` x ) = ( F ` x ) ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( f = F -> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) = ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) | 
						
							| 12 | 8 11 | mpteq12dv |  |-  ( f = F -> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) = ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) | 
						
							| 13 |  | cnex |  |-  CC e. _V | 
						
							| 14 |  | elpm2r |  |-  ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : A --> CC /\ A C_ CC ) ) -> F e. ( CC ^pm CC ) ) | 
						
							| 15 | 13 13 14 | mpanl12 |  |-  ( ( F : A --> CC /\ A C_ CC ) -> F e. ( CC ^pm CC ) ) | 
						
							| 16 | 2 1 15 | syl2anc |  |-  ( ph -> F e. ( CC ^pm CC ) ) | 
						
							| 17 | 2 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 18 | 13 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 19 | 18 1 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 20 | 17 19 | eqeltrd |  |-  ( ph -> dom F e. _V ) | 
						
							| 21 |  | rabexg |  |-  ( dom F e. _V -> { y e. dom F | ( y + 1 ) e. dom F } e. _V ) | 
						
							| 22 |  | mptexg |  |-  ( { y e. dom F | ( y + 1 ) e. dom F } e. _V -> ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) e. _V ) | 
						
							| 23 | 20 21 22 | 3syl |  |-  ( ph -> ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) e. _V ) | 
						
							| 24 | 5 12 16 23 | fvmptd3 |  |-  ( ph -> ( _/_\ ` F ) = ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) | 
						
							| 25 | 17 | eleq2d |  |-  ( ph -> ( ( y + 1 ) e. dom F <-> ( y + 1 ) e. A ) ) | 
						
							| 26 | 17 25 | rabeqbidv |  |-  ( ph -> { y e. dom F | ( y + 1 ) e. dom F } = { y e. A | ( y + 1 ) e. A } ) | 
						
							| 27 | 26 | mpteq1d |  |-  ( ph -> ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) = ( x e. { y e. A | ( y + 1 ) e. A } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) | 
						
							| 28 | 24 27 | eqtrd |  |-  ( ph -> ( _/_\ ` F ) = ( x e. { y e. A | ( y + 1 ) e. A } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) | 
						
							| 29 |  | fvoveq1 |  |-  ( x = X -> ( F ` ( x + 1 ) ) = ( F ` ( X + 1 ) ) ) | 
						
							| 30 |  | fveq2 |  |-  ( x = X -> ( F ` x ) = ( F ` X ) ) | 
						
							| 31 | 29 30 | oveq12d |  |-  ( x = X -> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) = ( ( F ` ( X + 1 ) ) - ( F ` X ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ x = X ) -> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) = ( ( F ` ( X + 1 ) ) - ( F ` X ) ) ) | 
						
							| 33 |  | oveq1 |  |-  ( y = X -> ( y + 1 ) = ( X + 1 ) ) | 
						
							| 34 | 33 | eleq1d |  |-  ( y = X -> ( ( y + 1 ) e. A <-> ( X + 1 ) e. A ) ) | 
						
							| 35 | 34 | elrab |  |-  ( X e. { y e. A | ( y + 1 ) e. A } <-> ( X e. A /\ ( X + 1 ) e. A ) ) | 
						
							| 36 | 3 4 35 | sylanbrc |  |-  ( ph -> X e. { y e. A | ( y + 1 ) e. A } ) | 
						
							| 37 |  | ovexd |  |-  ( ph -> ( ( F ` ( X + 1 ) ) - ( F ` X ) ) e. _V ) | 
						
							| 38 | 28 32 36 37 | fvmptd |  |-  ( ph -> ( ( _/_\ ` F ) ` X ) = ( ( F ` ( X + 1 ) ) - ( F ` X ) ) ) |