| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fwddifval.1 |
|- ( ph -> A C_ CC ) |
| 2 |
|
fwddifval.2 |
|- ( ph -> F : A --> CC ) |
| 3 |
|
fwddifval.3 |
|- ( ph -> X e. A ) |
| 4 |
|
fwddifval.4 |
|- ( ph -> ( X + 1 ) e. A ) |
| 5 |
|
df-fwddif |
|- _/_\ = ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) ) |
| 6 |
|
dmeq |
|- ( f = F -> dom f = dom F ) |
| 7 |
6
|
eleq2d |
|- ( f = F -> ( ( y + 1 ) e. dom f <-> ( y + 1 ) e. dom F ) ) |
| 8 |
6 7
|
rabeqbidv |
|- ( f = F -> { y e. dom f | ( y + 1 ) e. dom f } = { y e. dom F | ( y + 1 ) e. dom F } ) |
| 9 |
|
fveq1 |
|- ( f = F -> ( f ` ( x + 1 ) ) = ( F ` ( x + 1 ) ) ) |
| 10 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
| 11 |
9 10
|
oveq12d |
|- ( f = F -> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) = ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) |
| 12 |
8 11
|
mpteq12dv |
|- ( f = F -> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) = ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) |
| 13 |
|
cnex |
|- CC e. _V |
| 14 |
|
elpm2r |
|- ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : A --> CC /\ A C_ CC ) ) -> F e. ( CC ^pm CC ) ) |
| 15 |
13 13 14
|
mpanl12 |
|- ( ( F : A --> CC /\ A C_ CC ) -> F e. ( CC ^pm CC ) ) |
| 16 |
2 1 15
|
syl2anc |
|- ( ph -> F e. ( CC ^pm CC ) ) |
| 17 |
2
|
fdmd |
|- ( ph -> dom F = A ) |
| 18 |
13
|
a1i |
|- ( ph -> CC e. _V ) |
| 19 |
18 1
|
ssexd |
|- ( ph -> A e. _V ) |
| 20 |
17 19
|
eqeltrd |
|- ( ph -> dom F e. _V ) |
| 21 |
|
rabexg |
|- ( dom F e. _V -> { y e. dom F | ( y + 1 ) e. dom F } e. _V ) |
| 22 |
|
mptexg |
|- ( { y e. dom F | ( y + 1 ) e. dom F } e. _V -> ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) e. _V ) |
| 23 |
20 21 22
|
3syl |
|- ( ph -> ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) e. _V ) |
| 24 |
5 12 16 23
|
fvmptd3 |
|- ( ph -> ( _/_\ ` F ) = ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) |
| 25 |
17
|
eleq2d |
|- ( ph -> ( ( y + 1 ) e. dom F <-> ( y + 1 ) e. A ) ) |
| 26 |
17 25
|
rabeqbidv |
|- ( ph -> { y e. dom F | ( y + 1 ) e. dom F } = { y e. A | ( y + 1 ) e. A } ) |
| 27 |
26
|
mpteq1d |
|- ( ph -> ( x e. { y e. dom F | ( y + 1 ) e. dom F } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) = ( x e. { y e. A | ( y + 1 ) e. A } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) |
| 28 |
24 27
|
eqtrd |
|- ( ph -> ( _/_\ ` F ) = ( x e. { y e. A | ( y + 1 ) e. A } |-> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) ) ) |
| 29 |
|
fvoveq1 |
|- ( x = X -> ( F ` ( x + 1 ) ) = ( F ` ( X + 1 ) ) ) |
| 30 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
| 31 |
29 30
|
oveq12d |
|- ( x = X -> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) = ( ( F ` ( X + 1 ) ) - ( F ` X ) ) ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ x = X ) -> ( ( F ` ( x + 1 ) ) - ( F ` x ) ) = ( ( F ` ( X + 1 ) ) - ( F ` X ) ) ) |
| 33 |
|
oveq1 |
|- ( y = X -> ( y + 1 ) = ( X + 1 ) ) |
| 34 |
33
|
eleq1d |
|- ( y = X -> ( ( y + 1 ) e. A <-> ( X + 1 ) e. A ) ) |
| 35 |
34
|
elrab |
|- ( X e. { y e. A | ( y + 1 ) e. A } <-> ( X e. A /\ ( X + 1 ) e. A ) ) |
| 36 |
3 4 35
|
sylanbrc |
|- ( ph -> X e. { y e. A | ( y + 1 ) e. A } ) |
| 37 |
|
ovexd |
|- ( ph -> ( ( F ` ( X + 1 ) ) - ( F ` X ) ) e. _V ) |
| 38 |
28 32 36 37
|
fvmptd |
|- ( ph -> ( ( _/_\ ` F ) ` X ) = ( ( F ` ( X + 1 ) ) - ( F ` X ) ) ) |