Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifval.1 |
|
2 |
|
fwddifval.2 |
|
3 |
|
fwddifval.3 |
|
4 |
|
fwddifval.4 |
|
5 |
|
df-fwddif |
|
6 |
|
dmeq |
|
7 |
6
|
eleq2d |
|
8 |
6 7
|
rabeqbidv |
|
9 |
|
fveq1 |
|
10 |
|
fveq1 |
|
11 |
9 10
|
oveq12d |
|
12 |
8 11
|
mpteq12dv |
|
13 |
|
cnex |
|
14 |
|
elpm2r |
|
15 |
13 13 14
|
mpanl12 |
|
16 |
2 1 15
|
syl2anc |
|
17 |
2
|
fdmd |
|
18 |
13
|
a1i |
|
19 |
18 1
|
ssexd |
|
20 |
17 19
|
eqeltrd |
|
21 |
|
rabexg |
|
22 |
|
mptexg |
|
23 |
20 21 22
|
3syl |
|
24 |
5 12 16 23
|
fvmptd3 |
|
25 |
17
|
eleq2d |
|
26 |
17 25
|
rabeqbidv |
|
27 |
26
|
mpteq1d |
|
28 |
24 27
|
eqtrd |
|
29 |
|
fvoveq1 |
|
30 |
|
fveq2 |
|
31 |
29 30
|
oveq12d |
|
32 |
31
|
adantl |
|
33 |
|
oveq1 |
|
34 |
33
|
eleq1d |
|
35 |
34
|
elrab |
|
36 |
3 4 35
|
sylanbrc |
|
37 |
|
ovexd |
|
38 |
28 32 36 37
|
fvmptd |
|