| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifval.1 |  | 
						
							| 2 |  | fwddifval.2 |  | 
						
							| 3 |  | fwddifval.3 |  | 
						
							| 4 |  | fwddifval.4 |  | 
						
							| 5 |  | df-fwddif |  | 
						
							| 6 |  | dmeq |  | 
						
							| 7 | 6 | eleq2d |  | 
						
							| 8 | 6 7 | rabeqbidv |  | 
						
							| 9 |  | fveq1 |  | 
						
							| 10 |  | fveq1 |  | 
						
							| 11 | 9 10 | oveq12d |  | 
						
							| 12 | 8 11 | mpteq12dv |  | 
						
							| 13 |  | cnex |  | 
						
							| 14 |  | elpm2r |  | 
						
							| 15 | 13 13 14 | mpanl12 |  | 
						
							| 16 | 2 1 15 | syl2anc |  | 
						
							| 17 | 2 | fdmd |  | 
						
							| 18 | 13 | a1i |  | 
						
							| 19 | 18 1 | ssexd |  | 
						
							| 20 | 17 19 | eqeltrd |  | 
						
							| 21 |  | rabexg |  | 
						
							| 22 |  | mptexg |  | 
						
							| 23 | 20 21 22 | 3syl |  | 
						
							| 24 | 5 12 16 23 | fvmptd3 |  | 
						
							| 25 | 17 | eleq2d |  | 
						
							| 26 | 17 25 | rabeqbidv |  | 
						
							| 27 | 26 | mpteq1d |  | 
						
							| 28 | 24 27 | eqtrd |  | 
						
							| 29 |  | fvoveq1 |  | 
						
							| 30 |  | fveq2 |  | 
						
							| 31 | 29 30 | oveq12d |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | oveq1 |  | 
						
							| 34 | 33 | eleq1d |  | 
						
							| 35 | 34 | elrab |  | 
						
							| 36 | 3 4 35 | sylanbrc |  | 
						
							| 37 |  | ovexd |  | 
						
							| 38 | 28 32 36 37 | fvmptd |  |