| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifval.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 2 |  | fwddifval.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | fwddifval.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 4 |  | fwddifval.4 | ⊢ ( 𝜑  →  ( 𝑋  +  1 )  ∈  𝐴 ) | 
						
							| 5 |  | df-fwddif | ⊢  △   =  ( 𝑓  ∈  ( ℂ  ↑pm  ℂ )  ↦  ( 𝑥  ∈  { 𝑦  ∈  dom  𝑓  ∣  ( 𝑦  +  1 )  ∈  dom  𝑓 }  ↦  ( ( 𝑓 ‘ ( 𝑥  +  1 ) )  −  ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 6 |  | dmeq | ⊢ ( 𝑓  =  𝐹  →  dom  𝑓  =  dom  𝐹 ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑦  +  1 )  ∈  dom  𝑓  ↔  ( 𝑦  +  1 )  ∈  dom  𝐹 ) ) | 
						
							| 8 | 6 7 | rabeqbidv | ⊢ ( 𝑓  =  𝐹  →  { 𝑦  ∈  dom  𝑓  ∣  ( 𝑦  +  1 )  ∈  dom  𝑓 }  =  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 } ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥  +  1 ) )  =  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 11 | 9 10 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ ( 𝑥  +  1 ) )  −  ( 𝑓 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 12 | 8 11 | mpteq12dv | ⊢ ( 𝑓  =  𝐹  →  ( 𝑥  ∈  { 𝑦  ∈  dom  𝑓  ∣  ( 𝑦  +  1 )  ∈  dom  𝑓 }  ↦  ( ( 𝑓 ‘ ( 𝑥  +  1 ) )  −  ( 𝑓 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 13 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 14 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  ℂ  ∈  V )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℂ ) )  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 15 | 13 13 14 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℂ )  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 16 | 2 1 15 | syl2anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 17 | 2 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 18 | 13 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 19 | 18 1 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 20 | 17 19 | eqeltrd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 21 |  | rabexg | ⊢ ( dom  𝐹  ∈  V  →  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ∈  V ) | 
						
							| 22 |  | mptexg | ⊢ ( { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ∈  V  →  ( 𝑥  ∈  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 23 | 20 21 22 | 3syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 24 | 5 12 16 23 | fvmptd3 | ⊢ ( 𝜑  →  (  △  ‘ 𝐹 )  =  ( 𝑥  ∈  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 17 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝑦  +  1 )  ∈  dom  𝐹  ↔  ( 𝑦  +  1 )  ∈  𝐴 ) ) | 
						
							| 26 | 17 25 | rabeqbidv | ⊢ ( 𝜑  →  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  =  { 𝑦  ∈  𝐴  ∣  ( 𝑦  +  1 )  ∈  𝐴 } ) | 
						
							| 27 | 26 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑦  ∈  dom  𝐹  ∣  ( 𝑦  +  1 )  ∈  dom  𝐹 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  ( 𝑦  +  1 )  ∈  𝐴 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 28 | 24 27 | eqtrd | ⊢ ( 𝜑  →  (  △  ‘ 𝐹 )  =  ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  ( 𝑦  +  1 )  ∈  𝐴 }  ↦  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 29 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ ( 𝑥  +  1 ) )  =  ( 𝐹 ‘ ( 𝑋  +  1 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 31 | 29 30 | oveq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  1 ) )  −  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( ( 𝐹 ‘ ( 𝑥  +  1 ) )  −  ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑋  +  1 ) )  −  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  +  1 )  =  ( 𝑋  +  1 ) ) | 
						
							| 34 | 33 | eleq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑦  +  1 )  ∈  𝐴  ↔  ( 𝑋  +  1 )  ∈  𝐴 ) ) | 
						
							| 35 | 34 | elrab | ⊢ ( 𝑋  ∈  { 𝑦  ∈  𝐴  ∣  ( 𝑦  +  1 )  ∈  𝐴 }  ↔  ( 𝑋  ∈  𝐴  ∧  ( 𝑋  +  1 )  ∈  𝐴 ) ) | 
						
							| 36 | 3 4 35 | sylanbrc | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑦  ∈  𝐴  ∣  ( 𝑦  +  1 )  ∈  𝐴 } ) | 
						
							| 37 |  | ovexd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑋  +  1 ) )  −  ( 𝐹 ‘ 𝑋 ) )  ∈  V ) | 
						
							| 38 | 28 32 36 37 | fvmptd | ⊢ ( 𝜑  →  ( (  △  ‘ 𝐹 ) ‘ 𝑋 )  =  ( ( 𝐹 ‘ ( 𝑋  +  1 ) )  −  ( 𝐹 ‘ 𝑋 ) ) ) |