Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifval.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
fwddifval.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
fwddifval.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
4 |
|
fwddifval.4 |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ 𝐴 ) |
5 |
|
df-fwddif |
⊢ △ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) ) ) |
6 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
7 |
6
|
eleq2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑦 + 1 ) ∈ dom 𝑓 ↔ ( 𝑦 + 1 ) ∈ dom 𝐹 ) ) |
8 |
6 7
|
rabeqbidv |
⊢ ( 𝑓 = 𝐹 → { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } = { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ) |
9 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 1 ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) |
10 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) |
12 |
8 11
|
mpteq12dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
13 |
|
cnex |
⊢ ℂ ∈ V |
14 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
15 |
13 13 14
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
16 |
2 1 15
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
17 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
18 |
13
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
19 |
18 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
20 |
17 19
|
eqeltrd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
21 |
|
rabexg |
⊢ ( dom 𝐹 ∈ V → { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ∈ V ) |
22 |
|
mptexg |
⊢ ( { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ∈ V → ( 𝑥 ∈ { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ V ) |
23 |
20 21 22
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ V ) |
24 |
5 12 16 23
|
fvmptd3 |
⊢ ( 𝜑 → ( △ ‘ 𝐹 ) = ( 𝑥 ∈ { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
25 |
17
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑦 + 1 ) ∈ dom 𝐹 ↔ ( 𝑦 + 1 ) ∈ 𝐴 ) ) |
26 |
17 25
|
rabeqbidv |
⊢ ( 𝜑 → { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } = { 𝑦 ∈ 𝐴 ∣ ( 𝑦 + 1 ) ∈ 𝐴 } ) |
27 |
26
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ dom 𝐹 ∣ ( 𝑦 + 1 ) ∈ dom 𝐹 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝑦 + 1 ) ∈ 𝐴 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
24 27
|
eqtrd |
⊢ ( 𝜑 → ( △ ‘ 𝐹 ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝑦 + 1 ) ∈ 𝐴 } ↦ ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
29 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( 𝑥 + 1 ) ) = ( 𝐹 ‘ ( 𝑋 + 1 ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
31 |
29 30
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 1 ) ) − ( 𝐹 ‘ 𝑋 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝐹 ‘ ( 𝑥 + 1 ) ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑋 + 1 ) ) − ( 𝐹 ‘ 𝑋 ) ) ) |
33 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 + 1 ) = ( 𝑋 + 1 ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 + 1 ) ∈ 𝐴 ↔ ( 𝑋 + 1 ) ∈ 𝐴 ) ) |
35 |
34
|
elrab |
⊢ ( 𝑋 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝑦 + 1 ) ∈ 𝐴 } ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝑋 + 1 ) ∈ 𝐴 ) ) |
36 |
3 4 35
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑦 ∈ 𝐴 ∣ ( 𝑦 + 1 ) ∈ 𝐴 } ) |
37 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑋 + 1 ) ) − ( 𝐹 ‘ 𝑋 ) ) ∈ V ) |
38 |
28 32 36 37
|
fvmptd |
⊢ ( 𝜑 → ( ( △ ‘ 𝐹 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ ( 𝑋 + 1 ) ) − ( 𝐹 ‘ 𝑋 ) ) ) |