Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifnval.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
fwddifnval.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
fwddifnval.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
4 |
|
fwddifnval.4 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
5 |
|
fwddifnval.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
6 |
|
df-fwddifn |
⊢ △n = ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → △n = ( 𝑛 ∈ ℕ0 , 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
10 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
11 |
10
|
eleq2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑦 + 𝑘 ) ∈ dom 𝑓 ↔ ( 𝑦 + 𝑘 ) ∈ dom 𝐹 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( ( 𝑦 + 𝑘 ) ∈ dom 𝑓 ↔ ( 𝑦 + 𝑘 ) ∈ dom 𝐹 ) ) |
13 |
9 12
|
raleqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 ) ) |
14 |
13
|
rabbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } = { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ) |
15 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 C 𝑘 ) = ( 𝑁 C 𝑘 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( 𝑛 C 𝑘 ) = ( 𝑁 C 𝑘 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 𝑘 ) = ( 𝑁 − 𝑘 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( - 1 ↑ ( 𝑛 − 𝑘 ) ) = ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ) |
19 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) |
20 |
18 19
|
oveqan12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) = ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) |
21 |
16 20
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) |
23 |
9 22
|
sumeq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) |
24 |
14 23
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑛 ) ( 𝑦 + 𝑘 ) ∈ dom 𝑓 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 ) · ( ( - 1 ↑ ( 𝑛 − 𝑘 ) ) · ( 𝑓 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) |
26 |
|
cnex |
⊢ ℂ ∈ V |
27 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
28 |
26 26 27
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
29 |
3 2 28
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
30 |
26
|
mptrabex |
⊢ ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ∈ V |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ∈ V ) |
32 |
7 25 1 29 31
|
ovmpod |
⊢ ( 𝜑 → ( 𝑁 △n 𝐹 ) = ( 𝑥 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) ) ) |
33 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) = ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
36 |
35
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑋 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑥 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
38 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → dom 𝐹 = 𝐴 ) |
40 |
5 39
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + 𝑘 ) ∈ dom 𝐹 ) |
41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑋 + 𝑘 ) ∈ dom 𝐹 ) |
42 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 + 𝑘 ) = ( 𝑋 + 𝑘 ) ) |
43 |
42
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑦 + 𝑘 ) ∈ dom 𝐹 ↔ ( 𝑋 + 𝑘 ) ∈ dom 𝐹 ) ) |
44 |
43
|
ralbidv |
⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 ↔ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑋 + 𝑘 ) ∈ dom 𝐹 ) ) |
45 |
44
|
elrab |
⊢ ( 𝑋 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ↔ ( 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑋 + 𝑘 ) ∈ dom 𝐹 ) ) |
46 |
4 41 45
|
sylanbrc |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑦 ∈ ℂ ∣ ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑦 + 𝑘 ) ∈ dom 𝐹 } ) |
47 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ V |
48 |
47
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ V ) |
49 |
32 37 46 48
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑁 △n 𝐹 ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |