| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifnval.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 2 |  | fwddifnval.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 3 |  | fwddifnval.3 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 4 |  | fwddifnval.4 | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 5 |  | fwddifnval.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋  +  𝑘 )  ∈  𝐴 ) | 
						
							| 6 |  | df-fwddifn | ⊢  △n   =  ( 𝑛  ∈  ℕ0 ,  𝑓  ∈  ( ℂ  ↑pm  ℂ )  ↦  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →   △n   =  ( 𝑛  ∈  ℕ0 ,  𝑓  ∈  ( ℂ  ↑pm  ℂ )  ↦  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 10 |  | dmeq | ⊢ ( 𝑓  =  𝐹  →  dom  𝑓  =  dom  𝐹 ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑦  +  𝑘 )  ∈  dom  𝑓  ↔  ( 𝑦  +  𝑘 )  ∈  dom  𝐹 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( ( 𝑦  +  𝑘 )  ∈  dom  𝑓  ↔  ( 𝑦  +  𝑘 )  ∈  dom  𝐹 ) ) | 
						
							| 13 | 9 12 | raleqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 ) ) | 
						
							| 14 | 13 | rabbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  =  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 } ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛 C 𝑘 )  =  ( 𝑁 C 𝑘 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( 𝑛 C 𝑘 )  =  ( 𝑁 C 𝑘 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  −  𝑘 )  =  ( 𝑁  −  𝑘 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( - 1 ↑ ( 𝑛  −  𝑘 ) )  =  ( - 1 ↑ ( 𝑁  −  𝑘 ) ) ) | 
						
							| 19 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) | 
						
							| 20 | 18 19 | oveqan12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) )  =  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) | 
						
							| 21 | 16 20 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) )  =  ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) )  =  ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) | 
						
							| 23 | 9 22 | sumeq12dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) | 
						
							| 24 | 14 23 | mpteq12dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 )  →  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑛  =  𝑁  ∧  𝑓  =  𝐹 ) )  →  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑦  +  𝑘 )  ∈  dom  𝑓 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑛 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑛  −  𝑘 ) )  ·  ( 𝑓 ‘ ( 𝑥  +  𝑘 ) ) ) ) )  =  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) | 
						
							| 26 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 27 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  ℂ  ∈  V )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℂ ) )  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 28 | 26 26 27 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  ℂ )  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 29 | 3 2 28 | syl2anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  ℂ ) ) | 
						
							| 30 | 26 | mptrabex | ⊢ ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) )  ∈  V | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) )  ∈  V ) | 
						
							| 32 | 7 25 1 29 31 | ovmpod | ⊢ ( 𝜑  →  ( 𝑁  △n  𝐹 )  =  ( 𝑥  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 }  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) ) ) ) | 
						
							| 33 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) )  =  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) )  =  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) )  =  ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) ) ) | 
						
							| 36 | 35 | sumeq2sdv | ⊢ ( 𝑥  =  𝑋  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑥  +  𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) ) ) | 
						
							| 38 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  dom  𝐹  =  𝐴 ) | 
						
							| 40 | 5 39 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋  +  𝑘 )  ∈  dom  𝐹 ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑋  +  𝑘 )  ∈  dom  𝐹 ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  +  𝑘 )  =  ( 𝑋  +  𝑘 ) ) | 
						
							| 43 | 42 | eleq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑦  +  𝑘 )  ∈  dom  𝐹  ↔  ( 𝑋  +  𝑘 )  ∈  dom  𝐹 ) ) | 
						
							| 44 | 43 | ralbidv | ⊢ ( 𝑦  =  𝑋  →  ( ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹  ↔  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑋  +  𝑘 )  ∈  dom  𝐹 ) ) | 
						
							| 45 | 44 | elrab | ⊢ ( 𝑋  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 }  ↔  ( 𝑋  ∈  ℂ  ∧  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑋  +  𝑘 )  ∈  dom  𝐹 ) ) | 
						
							| 46 | 4 41 45 | sylanbrc | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑦  ∈  ℂ  ∣  ∀ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑦  +  𝑘 )  ∈  dom  𝐹 } ) | 
						
							| 47 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) )  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) )  ∈  V ) | 
						
							| 49 | 32 37 46 48 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑁  △n  𝐹 ) ‘ 𝑋 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( - 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) ) ) |