| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fwddifn0.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 2 |
|
fwddifn0.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 3 |
|
fwddifn0.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 6 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 7 |
|
0z |
⊢ 0 ∈ ℤ |
| 8 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
| 10 |
9
|
eleq2i |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) ↔ 𝑘 ∈ { 0 } ) |
| 11 |
|
velsn |
⊢ ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 ) |
| 12 |
10 11
|
bitri |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) ↔ 𝑘 = 0 ) |
| 13 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) ) |
| 15 |
6
|
addridd |
⊢ ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 ) |
| 16 |
15 3
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 + 0 ) ∈ 𝐴 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑋 + 0 ) ∈ 𝐴 ) |
| 18 |
14 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
| 19 |
12 18
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
| 20 |
5 1 2 6 19
|
fwddifnval |
⊢ ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
| 21 |
15
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + 0 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 23 |
2 3
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 24 |
23
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 25 |
22 24
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 27 |
26 24
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 28 |
27 23
|
eqeltrd |
⊢ ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ∈ ℂ ) |
| 29 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = ( 0 C 0 ) ) |
| 30 |
|
bcnn |
⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) |
| 31 |
4 30
|
ax-mp |
⊢ ( 0 C 0 ) = 1 |
| 32 |
29 31
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = 1 ) |
| 33 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) ) |
| 34 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 35 |
33 34
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑘 = 0 → ( - 1 ↑ ( 0 − 𝑘 ) ) = ( - 1 ↑ 0 ) ) |
| 37 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 38 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
| 39 |
37 38
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
| 40 |
36 39
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( - 1 ↑ ( 0 − 𝑘 ) ) = 1 ) |
| 41 |
13
|
fveq2d |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) |
| 42 |
40 41
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) |
| 43 |
32 42
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
| 44 |
43
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
| 45 |
7 28 44
|
sylancr |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
| 46 |
45 27
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 47 |
20 46
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |