Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifn0.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
fwddifn0.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
3 |
|
fwddifn0.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
6 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
7 |
|
0z |
⊢ 0 ∈ ℤ |
8 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
9 |
7 8
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
10 |
9
|
eleq2i |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) ↔ 𝑘 ∈ { 0 } ) |
11 |
|
velsn |
⊢ ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 ) |
12 |
10 11
|
bitri |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) ↔ 𝑘 = 0 ) |
13 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) ) |
15 |
6
|
addid1d |
⊢ ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 ) |
16 |
15 3
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 + 0 ) ∈ 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑋 + 0 ) ∈ 𝐴 ) |
18 |
14 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
19 |
12 18
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
20 |
5 1 2 6 19
|
fwddifnval |
⊢ ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
21 |
15
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + 0 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
23 |
2 3
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
24 |
23
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
25 |
22 24
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
27 |
26 24
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
28 |
27 23
|
eqeltrd |
⊢ ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ∈ ℂ ) |
29 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = ( 0 C 0 ) ) |
30 |
|
bcnn |
⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) |
31 |
4 30
|
ax-mp |
⊢ ( 0 C 0 ) = 1 |
32 |
29 31
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = 1 ) |
33 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) ) |
34 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
35 |
33 34
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 ) |
36 |
35
|
oveq2d |
⊢ ( 𝑘 = 0 → ( - 1 ↑ ( 0 − 𝑘 ) ) = ( - 1 ↑ 0 ) ) |
37 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
38 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
39 |
37 38
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
40 |
36 39
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( - 1 ↑ ( 0 − 𝑘 ) ) = 1 ) |
41 |
13
|
fveq2d |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) |
42 |
40 41
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) |
43 |
32 42
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
44 |
43
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
45 |
7 28 44
|
sylancr |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
46 |
45 27
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
47 |
20 46
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |