Metamath Proof Explorer


Theorem fwddifn0

Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Hypotheses fwddifn0.1 ( 𝜑𝐴 ⊆ ℂ )
fwddifn0.2 ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
fwddifn0.3 ( 𝜑𝑋𝐴 )
Assertion fwddifn0 ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 fwddifn0.1 ( 𝜑𝐴 ⊆ ℂ )
2 fwddifn0.2 ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 fwddifn0.3 ( 𝜑𝑋𝐴 )
4 0nn0 0 ∈ ℕ0
5 4 a1i ( 𝜑 → 0 ∈ ℕ0 )
6 1 3 sseldd ( 𝜑𝑋 ∈ ℂ )
7 0z 0 ∈ ℤ
8 fzsn ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } )
9 7 8 ax-mp ( 0 ... 0 ) = { 0 }
10 9 eleq2i ( 𝑘 ∈ ( 0 ... 0 ) ↔ 𝑘 ∈ { 0 } )
11 velsn ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 )
12 10 11 bitri ( 𝑘 ∈ ( 0 ... 0 ) ↔ 𝑘 = 0 )
13 oveq2 ( 𝑘 = 0 → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) )
14 13 adantl ( ( 𝜑𝑘 = 0 ) → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) )
15 6 addid1d ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 )
16 15 3 eqeltrd ( 𝜑 → ( 𝑋 + 0 ) ∈ 𝐴 )
17 16 adantr ( ( 𝜑𝑘 = 0 ) → ( 𝑋 + 0 ) ∈ 𝐴 )
18 14 17 eqeltrd ( ( 𝜑𝑘 = 0 ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 )
19 12 18 sylan2b ( ( 𝜑𝑘 ∈ ( 0 ... 0 ) ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 )
20 5 1 2 6 19 fwddifnval ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) )
21 15 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + 0 ) ) = ( 𝐹𝑋 ) )
22 21 oveq2d ( 𝜑 → ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) = ( 1 · ( 𝐹𝑋 ) ) )
23 2 3 ffvelrnd ( 𝜑 → ( 𝐹𝑋 ) ∈ ℂ )
24 23 mulid2d ( 𝜑 → ( 1 · ( 𝐹𝑋 ) ) = ( 𝐹𝑋 ) )
25 22 24 eqtrd ( 𝜑 → ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) = ( 𝐹𝑋 ) )
26 25 oveq2d ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 1 · ( 𝐹𝑋 ) ) )
27 26 24 eqtrd ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 𝐹𝑋 ) )
28 27 23 eqeltrd ( 𝜑 → ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ∈ ℂ )
29 oveq2 ( 𝑘 = 0 → ( 0 C 𝑘 ) = ( 0 C 0 ) )
30 bcnn ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 )
31 4 30 ax-mp ( 0 C 0 ) = 1
32 29 31 eqtrdi ( 𝑘 = 0 → ( 0 C 𝑘 ) = 1 )
33 oveq2 ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) )
34 0m0e0 ( 0 − 0 ) = 0
35 33 34 eqtrdi ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 )
36 35 oveq2d ( 𝑘 = 0 → ( - 1 ↑ ( 0 − 𝑘 ) ) = ( - 1 ↑ 0 ) )
37 neg1cn - 1 ∈ ℂ
38 exp0 ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 )
39 37 38 ax-mp ( - 1 ↑ 0 ) = 1
40 36 39 eqtrdi ( 𝑘 = 0 → ( - 1 ↑ ( 0 − 𝑘 ) ) = 1 )
41 13 fveq2d ( 𝑘 = 0 → ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑋 + 0 ) ) )
42 40 41 oveq12d ( 𝑘 = 0 → ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) )
43 32 42 oveq12d ( 𝑘 = 0 → ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) )
44 43 fsum1 ( ( 0 ∈ ℤ ∧ ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) )
45 7 28 44 sylancr ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 1 · ( 1 · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) )
46 45 27 eqtrd ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 0 C 𝑘 ) · ( ( - 1 ↑ ( 0 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( 𝐹𝑋 ) )
47 20 46 eqtrd ( 𝜑 → ( ( 0 △n 𝐹 ) ‘ 𝑋 ) = ( 𝐹𝑋 ) )