| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifn0.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 2 |  | fwddifn0.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | fwddifn0.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 6 | 1 3 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 7 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 8 |  | fzsn | ⊢ ( 0  ∈  ℤ  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 0 ... 0 )  =  { 0 } | 
						
							| 10 | 9 | eleq2i | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  ↔  𝑘  ∈  { 0 } ) | 
						
							| 11 |  | velsn | ⊢ ( 𝑘  ∈  { 0 }  ↔  𝑘  =  0 ) | 
						
							| 12 | 10 11 | bitri | ⊢ ( 𝑘  ∈  ( 0 ... 0 )  ↔  𝑘  =  0 ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑋  +  𝑘 )  =  ( 𝑋  +  0 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑋  +  𝑘 )  =  ( 𝑋  +  0 ) ) | 
						
							| 15 | 6 | addridd | ⊢ ( 𝜑  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 16 | 15 3 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑋  +  0 )  ∈  𝐴 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑋  +  0 )  ∈  𝐴 ) | 
						
							| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  =  0 )  →  ( 𝑋  +  𝑘 )  ∈  𝐴 ) | 
						
							| 19 | 12 18 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 0 ) )  →  ( 𝑋  +  𝑘 )  ∈  𝐴 ) | 
						
							| 20 | 5 1 2 6 19 | fwddifnval | ⊢ ( 𝜑  →  ( ( 0  △n  𝐹 ) ‘ 𝑋 )  =  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( 0 C 𝑘 )  ·  ( ( - 1 ↑ ( 0  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) ) ) | 
						
							| 21 | 15 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑋  +  0 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝜑  →  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) )  =  ( 1  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 23 | 2 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 24 | 23 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( 𝜑  →  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝜑  →  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) )  =  ( 1  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 27 | 26 24 | eqtrd | ⊢ ( 𝜑  →  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 28 | 27 23 | eqeltrd | ⊢ ( 𝜑  →  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) )  ∈  ℂ ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 0 C 𝑘 )  =  ( 0 C 0 ) ) | 
						
							| 30 |  | bcnn | ⊢ ( 0  ∈  ℕ0  →  ( 0 C 0 )  =  1 ) | 
						
							| 31 | 4 30 | ax-mp | ⊢ ( 0 C 0 )  =  1 | 
						
							| 32 | 29 31 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( 0 C 𝑘 )  =  1 ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 0  −  𝑘 )  =  ( 0  −  0 ) ) | 
						
							| 34 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 35 | 33 34 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( 0  −  𝑘 )  =  0 ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑘  =  0  →  ( - 1 ↑ ( 0  −  𝑘 ) )  =  ( - 1 ↑ 0 ) ) | 
						
							| 37 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 38 |  | exp0 | ⊢ ( - 1  ∈  ℂ  →  ( - 1 ↑ 0 )  =  1 ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ ( - 1 ↑ 0 )  =  1 | 
						
							| 40 | 36 39 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( - 1 ↑ ( 0  −  𝑘 ) )  =  1 ) | 
						
							| 41 | 13 | fveq2d | ⊢ ( 𝑘  =  0  →  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) )  =  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) | 
						
							| 42 | 40 41 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( - 1 ↑ ( 0  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) )  =  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) ) | 
						
							| 43 | 32 42 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( 0 C 𝑘 )  ·  ( ( - 1 ↑ ( 0  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) )  =  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) ) ) | 
						
							| 44 | 43 | fsum1 | ⊢ ( ( 0  ∈  ℤ  ∧  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( 0 C 𝑘 )  ·  ( ( - 1 ↑ ( 0  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) )  =  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) ) ) | 
						
							| 45 | 7 28 44 | sylancr | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( 0 C 𝑘 )  ·  ( ( - 1 ↑ ( 0  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) )  =  ( 1  ·  ( 1  ·  ( 𝐹 ‘ ( 𝑋  +  0 ) ) ) ) ) | 
						
							| 46 | 45 27 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( ( 0 C 𝑘 )  ·  ( ( - 1 ↑ ( 0  −  𝑘 ) )  ·  ( 𝐹 ‘ ( 𝑋  +  𝑘 ) ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 47 | 20 46 | eqtrd | ⊢ ( 𝜑  →  ( ( 0  △n  𝐹 ) ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 ) ) |