Metamath Proof Explorer


Theorem fwddifn0

Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Hypotheses fwddifn0.1 φ A
fwddifn0.2 φ F : A
fwddifn0.3 φ X A
Assertion fwddifn0 φ 0 n F X = F X

Proof

Step Hyp Ref Expression
1 fwddifn0.1 φ A
2 fwddifn0.2 φ F : A
3 fwddifn0.3 φ X A
4 0nn0 0 0
5 4 a1i φ 0 0
6 1 3 sseldd φ X
7 0z 0
8 fzsn 0 0 0 = 0
9 7 8 ax-mp 0 0 = 0
10 9 eleq2i k 0 0 k 0
11 velsn k 0 k = 0
12 10 11 bitri k 0 0 k = 0
13 oveq2 k = 0 X + k = X + 0
14 13 adantl φ k = 0 X + k = X + 0
15 6 addid1d φ X + 0 = X
16 15 3 eqeltrd φ X + 0 A
17 16 adantr φ k = 0 X + 0 A
18 14 17 eqeltrd φ k = 0 X + k A
19 12 18 sylan2b φ k 0 0 X + k A
20 5 1 2 6 19 fwddifnval φ 0 n F X = k = 0 0 ( 0 k) 1 0 k F X + k
21 15 fveq2d φ F X + 0 = F X
22 21 oveq2d φ 1 F X + 0 = 1 F X
23 2 3 ffvelrnd φ F X
24 23 mulid2d φ 1 F X = F X
25 22 24 eqtrd φ 1 F X + 0 = F X
26 25 oveq2d φ 1 1 F X + 0 = 1 F X
27 26 24 eqtrd φ 1 1 F X + 0 = F X
28 27 23 eqeltrd φ 1 1 F X + 0
29 oveq2 k = 0 ( 0 k) = ( 0 0 )
30 bcnn 0 0 ( 0 0 ) = 1
31 4 30 ax-mp ( 0 0 ) = 1
32 29 31 eqtrdi k = 0 ( 0 k) = 1
33 oveq2 k = 0 0 k = 0 0
34 0m0e0 0 0 = 0
35 33 34 eqtrdi k = 0 0 k = 0
36 35 oveq2d k = 0 1 0 k = 1 0
37 neg1cn 1
38 exp0 1 1 0 = 1
39 37 38 ax-mp 1 0 = 1
40 36 39 eqtrdi k = 0 1 0 k = 1
41 13 fveq2d k = 0 F X + k = F X + 0
42 40 41 oveq12d k = 0 1 0 k F X + k = 1 F X + 0
43 32 42 oveq12d k = 0 ( 0 k) 1 0 k F X + k = 1 1 F X + 0
44 43 fsum1 0 1 1 F X + 0 k = 0 0 ( 0 k) 1 0 k F X + k = 1 1 F X + 0
45 7 28 44 sylancr φ k = 0 0 ( 0 k) 1 0 k F X + k = 1 1 F X + 0
46 45 27 eqtrd φ k = 0 0 ( 0 k) 1 0 k F X + k = F X
47 20 46 eqtrd φ 0 n F X = F X