Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifn0.1 |
|
2 |
|
fwddifn0.2 |
|
3 |
|
fwddifn0.3 |
|
4 |
|
0nn0 |
|
5 |
4
|
a1i |
|
6 |
1 3
|
sseldd |
|
7 |
|
0z |
|
8 |
|
fzsn |
|
9 |
7 8
|
ax-mp |
|
10 |
9
|
eleq2i |
|
11 |
|
velsn |
|
12 |
10 11
|
bitri |
|
13 |
|
oveq2 |
|
14 |
13
|
adantl |
|
15 |
6
|
addid1d |
|
16 |
15 3
|
eqeltrd |
|
17 |
16
|
adantr |
|
18 |
14 17
|
eqeltrd |
|
19 |
12 18
|
sylan2b |
|
20 |
5 1 2 6 19
|
fwddifnval |
|
21 |
15
|
fveq2d |
|
22 |
21
|
oveq2d |
|
23 |
2 3
|
ffvelrnd |
|
24 |
23
|
mulid2d |
|
25 |
22 24
|
eqtrd |
|
26 |
25
|
oveq2d |
|
27 |
26 24
|
eqtrd |
|
28 |
27 23
|
eqeltrd |
|
29 |
|
oveq2 |
|
30 |
|
bcnn |
|
31 |
4 30
|
ax-mp |
|
32 |
29 31
|
eqtrdi |
|
33 |
|
oveq2 |
|
34 |
|
0m0e0 |
|
35 |
33 34
|
eqtrdi |
|
36 |
35
|
oveq2d |
|
37 |
|
neg1cn |
|
38 |
|
exp0 |
|
39 |
37 38
|
ax-mp |
|
40 |
36 39
|
eqtrdi |
|
41 |
13
|
fveq2d |
|
42 |
40 41
|
oveq12d |
|
43 |
32 42
|
oveq12d |
|
44 |
43
|
fsum1 |
|
45 |
7 28 44
|
sylancr |
|
46 |
45 27
|
eqtrd |
|
47 |
20 46
|
eqtrd |
|