| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifn0.1 |  | 
						
							| 2 |  | fwddifn0.2 |  | 
						
							| 3 |  | fwddifn0.3 |  | 
						
							| 4 |  | 0nn0 |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 | 1 3 | sseldd |  | 
						
							| 7 |  | 0z |  | 
						
							| 8 |  | fzsn |  | 
						
							| 9 | 7 8 | ax-mp |  | 
						
							| 10 | 9 | eleq2i |  | 
						
							| 11 |  | velsn |  | 
						
							| 12 | 10 11 | bitri |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 | 6 | addridd |  | 
						
							| 16 | 15 3 | eqeltrd |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 14 17 | eqeltrd |  | 
						
							| 19 | 12 18 | sylan2b |  | 
						
							| 20 | 5 1 2 6 19 | fwddifnval |  | 
						
							| 21 | 15 | fveq2d |  | 
						
							| 22 | 21 | oveq2d |  | 
						
							| 23 | 2 3 | ffvelcdmd |  | 
						
							| 24 | 23 | mullidd |  | 
						
							| 25 | 22 24 | eqtrd |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 | 26 24 | eqtrd |  | 
						
							| 28 | 27 23 | eqeltrd |  | 
						
							| 29 |  | oveq2 |  | 
						
							| 30 |  | bcnn |  | 
						
							| 31 | 4 30 | ax-mp |  | 
						
							| 32 | 29 31 | eqtrdi |  | 
						
							| 33 |  | oveq2 |  | 
						
							| 34 |  | 0m0e0 |  | 
						
							| 35 | 33 34 | eqtrdi |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 |  | neg1cn |  | 
						
							| 38 |  | exp0 |  | 
						
							| 39 | 37 38 | ax-mp |  | 
						
							| 40 | 36 39 | eqtrdi |  | 
						
							| 41 | 13 | fveq2d |  | 
						
							| 42 | 40 41 | oveq12d |  | 
						
							| 43 | 32 42 | oveq12d |  | 
						
							| 44 | 43 | fsum1 |  | 
						
							| 45 | 7 28 44 | sylancr |  | 
						
							| 46 | 45 27 | eqtrd |  | 
						
							| 47 | 20 46 | eqtrd |  |