Metamath Proof Explorer


Theorem fwddifn0

Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Hypotheses fwddifn0.1 φA
fwddifn0.2 φF:A
fwddifn0.3 φXA
Assertion fwddifn0 φ0nFX=FX

Proof

Step Hyp Ref Expression
1 fwddifn0.1 φA
2 fwddifn0.2 φF:A
3 fwddifn0.3 φXA
4 0nn0 00
5 4 a1i φ00
6 1 3 sseldd φX
7 0z 0
8 fzsn 000=0
9 7 8 ax-mp 00=0
10 9 eleq2i k00k0
11 velsn k0k=0
12 10 11 bitri k00k=0
13 oveq2 k=0X+k=X+0
14 13 adantl φk=0X+k=X+0
15 6 addridd φX+0=X
16 15 3 eqeltrd φX+0A
17 16 adantr φk=0X+0A
18 14 17 eqeltrd φk=0X+kA
19 12 18 sylan2b φk00X+kA
20 5 1 2 6 19 fwddifnval φ0nFX=k=00(0k)10kFX+k
21 15 fveq2d φFX+0=FX
22 21 oveq2d φ1FX+0=1FX
23 2 3 ffvelcdmd φFX
24 23 mullidd φ1FX=FX
25 22 24 eqtrd φ1FX+0=FX
26 25 oveq2d φ11FX+0=1FX
27 26 24 eqtrd φ11FX+0=FX
28 27 23 eqeltrd φ11FX+0
29 oveq2 k=0(0k)=(00)
30 bcnn 00(00)=1
31 4 30 ax-mp (00)=1
32 29 31 eqtrdi k=0(0k)=1
33 oveq2 k=00k=00
34 0m0e0 00=0
35 33 34 eqtrdi k=00k=0
36 35 oveq2d k=010k=10
37 neg1cn 1
38 exp0 110=1
39 37 38 ax-mp 10=1
40 36 39 eqtrdi k=010k=1
41 13 fveq2d k=0FX+k=FX+0
42 40 41 oveq12d k=010kFX+k=1FX+0
43 32 42 oveq12d k=0(0k)10kFX+k=11FX+0
44 43 fsum1 011FX+0k=00(0k)10kFX+k=11FX+0
45 7 28 44 sylancr φk=00(0k)10kFX+k=11FX+0
46 45 27 eqtrd φk=00(0k)10kFX+k=FX
47 20 46 eqtrd φ0nFX=FX