Metamath Proof Explorer


Definition df-fwddifn

Description: Define the nth forward difference operator. This works out to be the forward difference operator iterated n times. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Assertion df-fwddifn n=n0,f𝑝𝑚xy|k0ny+kdomfk=0n(nk)1nkfx+k

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfwddifn classn
1 vn setvarn
2 cn0 class0
3 vf setvarf
4 cc class
5 cpm class𝑝𝑚
6 4 4 5 co class𝑝𝑚
7 vx setvarx
8 vy setvary
9 vk setvark
10 cc0 class0
11 cfz class
12 1 cv setvarn
13 10 12 11 co class0n
14 8 cv setvary
15 caddc class+
16 9 cv setvark
17 14 16 15 co classy+k
18 3 cv setvarf
19 18 cdm classdomf
20 17 19 wcel wffy+kdomf
21 20 9 13 wral wffk0ny+kdomf
22 21 8 4 crab classy|k0ny+kdomf
23 cbc class(..)
24 12 16 23 co class(nk)
25 cmul class×
26 c1 class1
27 26 cneg class-1
28 cexp class^
29 cmin class
30 12 16 29 co classnk
31 27 30 28 co class1nk
32 7 cv setvarx
33 32 16 15 co classx+k
34 33 18 cfv classfx+k
35 31 34 25 co class1nkfx+k
36 24 35 25 co class(nk)1nkfx+k
37 13 36 9 csu classk=0n(nk)1nkfx+k
38 7 22 37 cmpt classxy|k0ny+kdomfk=0n(nk)1nkfx+k
39 1 3 2 6 38 cmpo classn0,f𝑝𝑚xy|k0ny+kdomfk=0n(nk)1nkfx+k
40 0 39 wceq wffn=n0,f𝑝𝑚xy|k0ny+kdomfk=0n(nk)1nkfx+k