Metamath Proof Explorer


Definition df-bc

Description: Define the binomial coefficient operation. For example, ( 5C 3 ) = 1 0 ( ex-bc ).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". The expression ( N C K ) is read " N choose K ". Definition of binomial coefficient in Gleason p. 295. As suggested by Gleason, we define it to be 0 when 0 <_ k <_ n does not hold. (Contributed by NM, 10-Jul-2005)

Ref Expression
Assertion df-bc (..)=n0,kifk0nn!nk!k!0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbc class(..)
1 vn setvarn
2 cn0 class0
3 vk setvark
4 cz class
5 3 cv setvark
6 cc0 class0
7 cfz class
8 1 cv setvarn
9 6 8 7 co class0n
10 5 9 wcel wffk0n
11 cfa class!
12 8 11 cfv classn!
13 cdiv class÷
14 cmin class
15 8 5 14 co classnk
16 15 11 cfv classnk!
17 cmul class×
18 5 11 cfv classk!
19 16 18 17 co classnk!k!
20 12 19 13 co classn!nk!k!
21 10 20 6 cif classifk0nn!nk!k!0
22 1 3 2 4 21 cmpo classn0,kifk0nn!nk!k!0
23 0 22 wceq wff(..)=n0,kifk0nn!nk!k!0